logo

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

PDF Publication Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM ( cathode-active-material-coated-discrete-graphene-sheets-for- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 022

21 Asacontrolsample,theLFPparticle-bondedgrapheneshets werealsoproducedbyfollowingtheprocedureproposedby Ding, et al. Electrochemistry Communications, 12 (2010) pages10-13. ExperimentaldatashowthatNGPs,whenincorporatedto formgraphene-enhancedparticulatesofthepresentinven tion,provideexceptionalelectricalconductivitycharacteris ticstotheelectrodesintermsofamuchlowerpercolation thresholdandhigherelectricalconductivityatagivenweight % ofaditiveascomparedtothecorrespondingCNT-en hancedorcarbonblack-enhancedelectrodes. 10 22 paredfromspincoatingofRGO-waterSuspension.The resultingcoatedfilmwascutandmilledtoproduceCuPc coatedgrapheneshets.TwoCuPecoatingthicknesseswere producedintwoseparatesamples. ThespecificcapacityofthisCuPe-coatedgrapheneshet electrodewasmeasuredbyusingacoincelconfiguration withLimetalastheanodeactivematerialand1MLiClOin propylenecarbonate(PC)solutionastheelectrolyte.Abase linesampleofCuPewith30%byweightofAB(acetylene derivedcarbonblack)astheconductiveaditivewasalso preparedinasimilarmanner.Thecharge/dischargebehaviors ofthiscelwerealsomonitored.FIG.10showsthecycling behaviorsofalithiummetalbateryhavingagraphene-Sup portedCuPeorganiccoating(25nm)cathodeofthepresent invention,thoseofabaterycontainingagraphene-supported CuPCcoating(120nm)basedcathode,andthoseofabatery containingaCuPe-carbonblackcomposite-basedcathode. Thereareseveralsignificantobservationsthatcanbemade fromthesedata.First,giventhesamevolumefractionof CuPC,theCuPe-ABcompositebasedceliscapableofdeliv eringaninitialspecificcapacityofonly345mAh/g,butthe graphene-SupportedCuPecoating(120nm)basedcelhasan initialspecificcapacityof532mAh/g,basedonmeasure mentsconductedat1Crate(1Cratecompletingchargeor dischargein1hour,2Cratecompletingin/2hours,andinC ratecompletingin1/nhours,etc).Thisimpliesthattheuseof carbonblackasaconductivefilerdoesnotenableahigh cathode active material utilization rate. The thinner CuPc coating(25nm)enablesamuchhigheractivematerialutili Zationrate.Second,thedatahavealsoclearlydemonstrated thattheCuPc-ABcompositecathodehasafastcapacity decayratewiththespecificcapacitydroppingtoanunaccept ablylowvalueinlesthan100cycles.Incontrast,thecathode activematerial-coatedgraphenebasedbateries(coating thicknessof25nmand120nm)exhibitminimalcapacity decay(2-5%)evenafter200cycles. EXAMPLE 7 Li SCelsContainingS-CoatedGrapheneSheets S-coatedgrapheneshetscanbeeasilymadebysealinga SuficientamountofSulfurpowderandagraphenefilm(pre paredfromultrasonicspraying)inavacuumchamber(high degreeofvacuumisnotrequired).Sulfurcanbereadily sublimed into vapor by heating the sulfur powder from approximately145°C.to210°C.VariousScoatingthick nessesfromafewnanometerstoafewumcanbeobtained simplybyvaryingthephysicalvapordepositiontimes. S-coatedgrapheneshetsarethenproducedthroughfilm cutingandmiling. Asatypicalprocedureforpreparingelectrochemicaltest ingcels,theworkingelectrodeswerepreparedbymixing85 wt%activematerial(e.g.,S-coatedgrapheneshets),7wt% acetyleneblack(Super-P),and8wt%polyvinylidenefluo ride(PVDF,5wt%solidcontent)binderdissolvedinN-me thyl-2-pyrolidinoe(NMP).AftercoatingthesluriesonAl foil,theelectrodesweredriedat120°C.invacuumfor2hto removethesolventbeforepresing.Then,theelectrodeswere cutintoadisk(diameter=12mm)anddriedat100°C.for24 hinvacuum.Electrochemicalmeasurementswerecarriedout usingCR2032(3V)coin-typecelswithlithiummetalasthe anodeelectrode,Celgard2400membraneasseparator,and1 M LiPF electrolytesolutiondissolvedinamixtureofethyl enecarbonate(EC)anddiethylcarbonate(DEC)(EC-DEC, RepresentativeelectrochemicaltestingresultsareSumma rized in FIG. 8, which show the cycling behaviors of a lithium-ionbateryhavingaLFP-coatedgraphenesheetcath odeofthepresentinvention,thoseofabaterycontaininga graphene-bondedLFPnanoparticlecathode,andthoseofa15 baterycontainingacarbon-coatedLFPcomposite-based cathode.After140charge/dischargecycles,thebaterycon tainingacarbon-coatedLFPcomposite-basedcathodehas lost26.3%oftheoriginalcapacityandthebaterycontaining asimplemixtureofLFPandgrapheneshetsforthecathode lost16.8%ofthecapacity.Incontrast,thebateryhavinga LFP-coatedgraphenecathodeofthepresentinventionhas exhibiteda4% capacitylos.Thisisahighlysignificant improvementoverthepriorart. EXAMPLE 5 Graphene-EnabledVOs 25 PowderofV2O5particleswascompactedtoformadisc shapetargetforuseinasputeringchamber.Agraphenefilm30 preparedfromspin-castingofgraphene-waterSuspension wasdriedandplacedunderthesputeringtargetforacon troleddurationoftimetoobtainaVOs-coatedfilm.The coatedfilmwasthencutintoSmallpieces(approximately1 cm)andthensubjectedtobal-milingforfurthersizereduc35 tiontoobtainVO-grapheneshets. Forthepreparationofacontrolsample,inatypicalexperi ment,Vanadiumpentoxidegelswereobtainedbymixing V2O5inaLiClaqueoussolution.TheLi'-exchangedgels obtainedbyinteractionwithLiClsolution(theLi:Vmolar 40 ratiowaskeptas1:1)wasmixedwithaGO Suspensionand thenplacedinaTeflon-linedstainlesstel35mlautoclave, sealed,andheatedupto180°C.for12h.Aftersucha hydrothermaltreatment,thegreensolidswerecolected,thor oughlywashed,ultrasonicatedfor2minutes,anddriedat70° C.for12hfollowedbymixingwithanother0.1%GOin45 water,ultrasonicatingtobreakdownnano-beltsizes,andthen spray-dryingat200°C.toobtaingraphene-embracedcom positeparticulates. FIG.7showsthecyclingbehaviorsofthrelithiumbatter ieshavingaVO-coatedgrapheneshetcathode,a50 graphene/VOnanoparticlemixturecathode(co-precipi tatedVOs withGO),andacarbonnanofiber(CNF)-sup portedVOscoatingcathode,respectively.After105cycles, thebaterycelhavingacarbonnanofiber(CNF)-supported VOscoatingcathodehassuferedacapacitydecayof44%55 andthebateryhavingagraphene/V2O5nanoparticlecom positecathodesuferedacapacitydecayof21.5%.Incon trast,thebateryhavingaVO-coatedgraphenesheetcath odehaslostlesthan4%ofitsoriginalcapacityafter105 cycles,representingamajorimprovement. EXAMPLE 6 MetalNaphthalocyanine-ReducedGrapheneOxide (RGO)HybridCathode 60 65 US9,203,084B2 CuPe-coatedgrapheneshetswereobtainedbyvaporizing 1:1V/v).Thecelassembliesweremadeinanargon-filed CuPeinachamberalongwithagraphenefilm(5nm)pre glove-box.TheCVmeasurementswerecariedoutusingan

PDF Image | CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

cathode-active-material-coated-discrete-graphene-sheets-for--022

PDF Search Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

Original File Name Searched:

US9203084.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP