Electrospun Carbon Nanofibers from Biomass and Biomass Blends

PDF Publication Title:

Electrospun Carbon Nanofibers from Biomass and Biomass Blends ( electrospun-carbon-nanofibers-from-biomass-and-biomass-blend )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Polymers 2021, 13, 1071 17 of 20 86. Liu, Y.; Li, K.; Mohideen, M.; Ramakrishna, S. (Eds.) Chapter 1—Development of melt electrospinning: The past, present, and future. In Melt Electrospinning; Academic Press: Cambridge, MA, USA, 2019; pp. 1–5; ISBN 978-0-12-816220-0. 87. Kijen ́ska,E.;Swieszkowski,W.2—Generalrequirementsofelectrospunmaterialsfortissueengineering:Setupsandstrategyfor successful electrospinning in laboratory and industry. In Electrospun Materials for Tissue Engineering and Biomedical Applications; Uyar, T., Kny, E., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 43–56; ISBN 978-0-08-101022-8. 88. Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [CrossRef] [PubMed] 89. Khalili Amand, F.; Esmaeili, A. Investigating the properties of electrospun nanofibers made of hybride polymer containing anticoagulant drugs. Carbohydr. Polym. 2020, 228, 115397. [CrossRef] [PubMed] 90. Jahan, I.; Jadhav, A.; Wang, L.; Wang, X. Electrospinning from a convex needle with multiple jet toward better controlling and enhanced production rate. J. Appl. Polym. Sci. 2019, 136, 1–7. [CrossRef] 91. Hwang, M.; Karenson, M.O.; Elabd, Y.A. High Production Rate of High Purity, High Fidelity Nafion Nanofibers via Needleless Electrospinning. ACS Appl. Polym. Mater. 2019, 1, 2731–2740. [CrossRef] 92. Rosenthal, T.; Weller, J.M.; Chan, C.K. Needleless Electrospinning for High Throughput Production of Li7La3Zr2O12 Solid Electrolyte Nanofibers. Ind. Eng. Chem. Res. 2019, 58, 17399–17405. [CrossRef] 93. Yalcinkaya, F.; Komarek, M. Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces. Int. J. Mol. Sci. 2019, 20, 4317. [CrossRef] 94. Bavatharani, C.; Muthusankar, E.; Wabaidur, S.M.; Alothman, Z.A.; Alsheetan, K.M.; mana AL-Anazy, M.; Ragupathy, D. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review. Synth. Met. 2021, 271, 116609. [CrossRef] 95. Sundera Murthe, S.; Mohamed Saheed, M.S.; Perumal, V.; Mohamed Saheed, M.S.; Mohamed, N.M. 11—Electrospun Nanofibers for Biosensing Applications. In Nanobiosensors for Biomolecular Targeting; Gopinath, S.C.B., Lakshmipriya, T., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–267; ISBN 978-0-12-813900-4. 96. Trabelsi, M.; Mamun, A.; Klöcker, M.; Sabantina, L.; Großerhode, C.; Blachowicz, T.; Ehrmann, A. Increased mechanical properties of carbon nanofiber mats for possible medical applications. Fibers 2019, 7, 98. [CrossRef] 97. Sabantina, L.; Hes, L.; Mirasol, J.R.; Cordero, T.; Ehrmann, A. Water vapor permeability through PAN nanofiber mat with varying membrane-like areas. Fibres Text. East. Eur. 2019, 27, 12–15. [CrossRef] 98. Molnár, K.; Szolnoki, B.; Toldy, A.; Vas, L.M. Thermochemical stabilization and analysis of continuously electrospun nanofibers: Carbon nanotube-loaded polyacrylonitrile nanofibers for high performance carbon nanofiber mass production. J. Therm. Anal. Calorim. 2014, 117, 1123–1135. [CrossRef] 99. Liu, C.; Lafdi, K. Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends. J. Appl. Polym. Sci. 2017, 134, 45388. [CrossRef] 100. Gergin,I.;Ismar,E.;Sarac,A.S.Oxidativestabilizationofpolyacrylonitrilenanofibersandcarbonnanofiberscontaininggraphene oxide (GO): A spectroscopic and electrochemical study. Beilstein J. Nanotechnol. 2017, 8, 1616–1628. [CrossRef] 101. Sabantina,L.;Klöcker,M.;Wortmann,M.;Mirasol,J.R.;Cordero,T.;Moritzer,E.;Finsterbusch,K.;Ehrmann,A.Stabilizationof polyacrylonitrile nanofiber mats obtained by needleless electrospinning using dimethyl sulfoxide as solvent. J. Ind. Text. 2020, 50, 224–239. [CrossRef] 102. Sabantina,L.;Mirasol,J.R.;Cordero,T.;Finsterbusch,K.;Ehrmann,A.InvestigationofneedlelesselectrospunPANnanofiber mats. AIP Conf. Proc. 2018, 1952, 020085. [CrossRef] 103. Bashir,Z.Acriticalreviewofthestabilisationofpolyacrylonitrile.CarbonN.Y.1991,29,1081–1090.[CrossRef] 104. Dalton,S.;Heatley,F.;Budd,P.M.Thermalstabilizationofpolyacrylonitrilefibres.Polymer1999,40,5531–5543.[CrossRef] 105. Ibupoto,A.S.;Qureshi,U.A.;Ahmed,F.;Khatri,Z.;Khatri,M.;Maqsood,M.;Brohi,R.Z.;Kim,I.S.Reusablecarbonnanofibersfor efficient removal of methylene blue from aqueous solution. Chem. Eng. Res. Des. 2018, 136, 744–752. [CrossRef] 106. Jo,E.;Yeo,J.G.;Kim,D.K.;Oh,J.S.;Hong,C.K.Preparationofwell-controlledporouscarbonnanofibermaterialsbyvaryingthe compatibility of polymer blends. Polym. Int. 2014, 63, 1471–1477. [CrossRef] 107. Ji,L.;Yao,Y.;Toprakci,O.;Lin,Z.;Liang,Y.;Shi,Q.;Medford,A.J.;Millns,C.R.;Zhang,X.Fabricationofcarbonnanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 2050–2056. [CrossRef] 108. García-Mateos,F.J.;Ruiz-Rosas,R.;Rosas,J.M.;Rodríguez-Mirasol,J.;Cordero,T.ControllingtheComposition,Morphology, Porosity, and Surface Chemistry of Lignin-Based Electrospun Carbon Materials. Front. Mater. 2019, 6, 114. [CrossRef] 109. Miao,F.;Shao,C.;Li,X.;Wang,K.;Liu,Y.Flexiblesolid-statesupercapacitorsbasedonfreestandingnitrogen-dopedporous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. J. Mater. Chem. A 2016, 4, 4180–4187. [CrossRef] 110. Li,F.;Li,J.;Chen,L.;Dong,Y.;Xie,P.;Li,Q.Hydrogenproductionthroughhydrolysisofsodiumborohydride:Highlydispersed CoB particles immobilized in carbon nanofibers as a novel catalyst. Int. J. Hydrogen Energy 2020, 45, 32145–32156. [CrossRef] 111. Mamun,A.;Trabelsi,M.;Klöcker,M.;LukasStorck,J.;Böttjer,R.;Sabantina,L.Needlelesselectrospunpolyacrylonitrile/konjac glucomannan nanofiber mats. J. Eng. Fiber. Fabr. 2020, 15, 1558925020964806. [CrossRef] 112. Ma, C.; Li, Z.; Li, J.; Fan, Q.; Wu, L.; Shi, J.; Song, Y. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors. Appl. Surf. Sci. 2018, 456, 568–576. [CrossRef]

PDF Image | Electrospun Carbon Nanofibers from Biomass and Biomass Blends

PDF Search Title:

Electrospun Carbon Nanofibers from Biomass and Biomass Blends

Original File Name Searched:

88145ac687f0c36c7096f236fabe2cba856c.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)