logo

Electrospun Carbon Nanofibers from Biomass and Biomass Blends

PDF Publication Title:

Electrospun Carbon Nanofibers from Biomass and Biomass Blends ( electrospun-carbon-nanofibers-from-biomass-and-biomass-blend )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Polymers 2021, 13, 1071 19 of 20 139. Wang,P.;Gong,Z.;Ye,K.;Gao,Y.;Zhu,K.;Yan,J.;Wang,G.;Cao,D.Thestablelithiummetalcellwithtwo-electrodebiomass carbon. Electrochim. Acta 2020, 356, 136824. [CrossRef] 140. Worch,E.AdsorptionTechnologyinWaterTreatment;WalterdeGruyterGmbH:Berlin,Germany;Co.KG:Boston,MA,USA,2012; ISBN 9783110240221. 141. Dey,S.;Bano,F.;Malik,A.Pharmaceuticalsandpersonalcareproduct(PPCP)contamination—Aglobaldischargeinventory.In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Butterworth-Heinemann, Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 1–26; ISBN 9780128161890. 142. Zhou,X.;Liu,B.;Chen,Y.;Guo,L.;Wei,G.Carbonnanofiber-basedthree-dimensionalnanomaterialsforenergyandenvironmen- tal applications. Mater. Adv. 2020, 1, 2163–2181. [CrossRef] 143. Gan,L.;Geng,A.;Song,C.;Xu,L.;Wang,L.;Fang,X.;Han,S.;Cui,J.;Mei,C.SimultaneousremovalofrhodamineBandCr(VI) from water using cellulose carbon nanofiber incorporated with bismuth oxybromide: The effect of cellulose pyrolysis temperature on photocatalytic performance. Environ. Res. 2020, 185, 109414. [CrossRef] [PubMed] 144. Ali,N.;Babar,A.A.;Zhang,Y.;Iqbal,N.;Wang,X.;Yu,J.;Ding,B.Porous,flexible,andcore-shellstructuredcarbonnanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. J. Colloid Interface Sci. 2020, 560, 379–387. [CrossRef] [PubMed] 145. Chiang,Y.C.;Wu,C.Y.;Chen,Y.J.Effectsofactivationonthepropertiesofelectrospuncarbonnanofibersandtheiradsorption performance for carbon dioxide. Sep. Purif. Technol. 2020, 233, 116040. [CrossRef] 146. Chaniotakis,N.;Vamvakaki,V.;Tsagaraki,K.;Chaniotakis,N.CarbonNanofiber-BasedGlucoseBiosensorCarbonNanofiber- Based Glucose Biosensor. Anal. Chem. 2006, 78, 5538–5542. 147. Tran,P.A.;Zhang,L.;Webster,T.J.Carbonnanofibersandcarbonnanotubesinregenerativemedicine.Adv.DrugDeliv.Rev.2009, 61, 1097–1114. [CrossRef] [PubMed] 148. Swisher,L.Z.;Prior,A.M.;Gunaratna,M.J.;Shishido,S.;Madiyar,F.;Nguyen,T.A.;Hua,D.H.;Li,J.Quantitativeelectrochemical detection of cathepsin B activity in breast cancer cell lysates using carbon nanofiber nanoelectrode arrays toward identification of cancer formation. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1695–1704. [CrossRef] 149. Olenic,L.;Mihailescu,G.;Pruneanu,S.;Lupu,D.;Biris,A.R.;Margineanu,P.;Garabagiu,S.;Biris,A.S.Investigationofcarbon nanofibers as support for bioactive substances. J. Mater. Sci. Mater. Med. 2009, 20, 177–183. [CrossRef] 150. Nguyen-Vu,T.D.B.;Chen,H.;Cassell,A.M.;Andrews,R.J.;Meyyappan,M.;Li,J.Verticallyalignedcarbonnanofiberarchitecture as a multifunctional 3-D neural electrical interface. IEEE Trans. Biomed. Eng. 2007, 54, 1121–1128. [CrossRef] [PubMed] 151. Webster,T.J.;Waid,M.C.;McKenzie,J.L.;Price,R.L.;Ejiofor,J.U.Nano-biotechnology:Carbonnanofibresasimprovedneuraland orthopaedic implants. Nanotechnology 2004, 15, 48–54. [CrossRef] 152. Khang,D.;Sato,M.;Price,R.L.;Ribbe,A.E.;Webster,T.J.Selectiveadhesionandmineraldepositionbyosteoblastsoncarbon nanofiber patterns. Int. J. Nanomed. 2006, 1, 65–72. [CrossRef] [PubMed] 153. Aoki,K.;Haniu,H.;Kim,Y.A.;Saito,N.Theuseofelectrospunorganicandcarbonnanofibersinboneregeneration.Nanomaterials 2020, 10, 562. [CrossRef] 154. Pilehvar-Soltanahmadi,Y.;Dadashpour,M.;Mohajeri,A.;Fattahi,A.;Sheervalilou,R.;Zarghami,N.AnOverviewonApplication of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings. Mini Rev. Med. Chem. 2017, 18, 414–427. [CrossRef] 155. Sylvester,M.A.;Amini,F.;Keat,T.C.Electrospunnanofibersinwoundhealing.Mater.TodayProc.2019,29,1–6.[CrossRef] 156. Saito,N.;Aoki,K.;Usui,Y.;Shimizu,M.;Hara,K.;Narita,N.;Ogihara,N.;Nakamura,K.;Ishigaki,N.;Kato,H.;etal.Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem. Soc. Rev. 2011, 40, 3824–3834. [CrossRef] [PubMed] 157. Zhang,L.;Aboagye,A.;Kelkar,A.;Lai,C.;Fong,H.Areview:Carbonnanofibersfromelectrospunpolyacrylonitrileandtheir applications. J. Mater. Sci. 2014, 49, 463–480. [CrossRef] 158. Smolka,W.;Panek,A.;Gubernat,M.;Szczypta-Fraczek,A.;Jelen,P.;Paluszkiewicz,C.;Markowski,J.;Blazewicz,M.Structure and Biological Properties of Surface-Engineered Carbon Nanofibers. J. Nanomater. 2019, 2019, 4146190. [CrossRef] 159. Li,Z.;Milionis,A.;Zheng,Y.;Yee,M.;Codispoti,L.;Tan,F.;Poulikakos,D.;Yap,C.H.Superhydrophobichemostaticnanofiber composites for fast clotting and minimal adhesion. In Proceedings of the Nature Communications; Springer: New York, NY, USA, 2019; Volume 10. 160. Ding,Y.;Li,W.;Zhang,F.;Liu,Z.;ZanjanizadehEzazi,N.;Liu,D.;Santos,H.A.ElectrospunFibrousArchitecturesforDrug Delivery, Tissue Engineering and Cancer Therapy. Adv. Funct. Mater. 2019, 29, 1802852. [CrossRef] 161. Scaffaro,R.;Maio,A.;Lopresti,F.;Botta,L.Nanocarbonsinelectrospunpolymericnanomatsfortissueengineering:Areview. Polymers 2017, 9, 76. [CrossRef] [PubMed] 162. Ngadiman,N.H.A.;Noordin,M.Y.;Idris,A.;Kurniawan,D.Areviewofevolutionofelectrospuntissueengineeringscaffold: From two dimensions to three dimensions. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 597–616. [CrossRef] 163. Ma, G.; Fang, D.; Liu, Y.; Zhu, X.; Nie, J. Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr. Polym. 2012, 87, 737–743. [CrossRef] 164. Xu,C.;Inai,R.;Kotaki,M.;Ramakrishna,S.Electrospunnanofiberfabricationassyntheticextracellularmatrixanditspotential for vascular tissue engineering. Tissue Eng. 2004, 10, 1160–1168. [CrossRef] [PubMed]

PDF Image | Electrospun Carbon Nanofibers from Biomass and Biomass Blends

electrospun-carbon-nanofibers-from-biomass-and-biomass-blend-019

PDF Search Title:

Electrospun Carbon Nanofibers from Biomass and Biomass Blends

Original File Name Searched:

88145ac687f0c36c7096f236fabe2cba856c.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP