First-Principles Study of Redox End Members in Lithium Sulfur

PDF Publication Title:

First-Principles Study of Redox End Members in Lithium Sulfur ( first-principles-study-redox-end-members-lithium-sulfur )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

The Journal of Physical Chemistry C (27) Wallace, D. C. Thermodynamics of crystals; Wiley: New York, 1972. (28)Albertus,P.;Girishkumar,G.;McCloskey,B.;Sańchez-Carrera, R. S.; Kozinsky, B.; Christensen, J.; Luntz, A. C. Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling. J. Electrochem. Soc. 2011, 158, A343−A351. (29) Radin, M.; Tian, F.; Siegel, D. Electronic structure of Li2O2 {0001} surfaces. J. Mater. Sci. 2012, 47, 7564−7570. (30) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15−50. (31) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758−1775. (32) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953−17979. (33) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188−5192. (34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868. (35) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401. (36) Klimes,̌ J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131. (37) Klimes,̌ J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2010, 22, 022201. (38) Lee, K.; Murray, E. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101. (39) Murnaghan, F. D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. U.S.A. 1944, 30, 244−247. (40) Wei, S.; Chou, M. Y. Ab initio calculation of force constants and full phonon dispersions. Phys. Rev. Lett. 1992, 69, 2799−2802. (41) Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. (42) Shishkin, M.; Kresse, G. Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 2006, 74, 035101. (43) Reuter, K.; Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 2001, 65, 035406. (44) Slotwinski, T.; Trivisonno, J. Temperature dependence of the elastic constants of single crystal lithium. J. Phys. Chem. Solids 1969, 30, 1276−1278. (45) Berliner, R.; Fajen, O.; Smith, H. G.; Hitterman, R. L. Neutron powder-diffraction studies of lithium, sodium, and potassium metal. Phys. Rev. B 1989, 40, 12086−12097. (46) Bührer, V. W.; Bill, U. H. Phononen-Dispersion in Na2S. Helv. Phys. Acta 1977, 50, 431−438. (47) Buehrer, W.; Altorfer, F.; Mesot, J.; Bill, H.; Carron, P.; Smith, H. G. Lattice dynamics and the diffuse phase transition of lithium sulphide investigated by coherent neutron scattering. J. Phys.: Condens. Matter 1991, 3, 1055. (48) Luo, H.; Ruoff, A. X-ray-diffraction study of sulfur to 32 GPa: Amorphization at 25 GPa. Phys. Rev. B 1993, 48, 569−572. (49) Rettig, S. J.; Trotter, J. Refinement of the structure of orthorhombic sulfur, α-S8. Acta Crystallogr., Sect. C 1987, 43, 2260− 2262. (50) David, W. I. F.; Ibberson, R. M.; Cox, S. F. J.; Wood, P. T. Order-disorder transition in monoclinic sulfur: a precise structural study by high-resolution neutron powder diffraction. Acta Crystallogr., Sect. B 2006, 62, 953−959. (51) Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106. Article 4683 DOI: 10.1021/jp513023v J. Phys. Chem. C 2015, 119, 4675−4683 (52) Fishman, M.; Zhuang, H. L.; Mathew, K.; Dirschka, W.; Hennig, R. G. Accuracy of exchange-correlation functionals and effect of solvationonthesurfaceenergyofcopper.Phys.Rev.B2013,87, 245402. (53) Wohlfarth, C., Dielectric constant of 1,2-dimethoxyethane. In Supplement to IV/6; Lechner, M. D., Ed.; Springer: Berlin Heidelberg, 2008; Vol. 17, pp 263−268. (54) Hautier, G.; Ong, S. P.; Jain, A.; Moore, C. J.; Ceder, G. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 2012, 85, 155208. (55) Cañas, N. A.; Wolf, S.; Wagner, N.; Friedrich, K. A. In-situ X-ray diffraction studies of lithium−sulfur batteries. J. Power Sources 2013, 226, 313−319. (56) Wangman, D. D.; Evans, Q. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L., The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C 1 and C 2 Organic Substances in SI Units. J. Phys. Chem. Ref. Data 1982, 11 (Supplement No.2). (57) Fuchs, F.; Furthmüller, J.; Bechstedt, F.; Shishkin, M.; Kresse, G. Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys. Rev. B 2007, 76, 115109. (58) Abass, A. K.; Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. J. Phys. Chem. Solids 1986, 47, 143−145. (59) Sze, S. M.; Ng, K. K. Appendix F Properties of Important Semiconductors. In Physics of Semiconductor Devices; John Wiley & Sons, Inc.: New York, 2006; pp 789−789. (60) Liu, G.; Niu, P.; Yin, L.; Cheng, H.-M. α-Sulfur Crystals as a Visible-Light-Active Photocatalyst. J. Am. Chem. Soc. 2012, 134, 9070− 9073. (61) Wulff, G. On the question of the rate of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral. 1901, 34, 449. (62) Nagao, M.; Hayashi, A.; Tatsumisago, M. High-capacity Li2S- nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J. Mater. Chem. 2012, 22, 10015−10020. (63) Cai, K.; Song, M.-K.; Cairns, E. J.; Zhang, Y. Nanostructured Li2S−C Composites as Cathode Material for High-Energy Lithium/ Sulfur Batteries. Nano Lett. 2012, 12, 6474−6479.

PDF Image | First-Principles Study of Redox End Members in Lithium Sulfur

PDF Search Title:

First-Principles Study of Redox End Members in Lithium Sulfur

Original File Name Searched:

JPCC_Li-S.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)