logo

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

PDF Publication Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES ( flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

US 9,905,856 B1 12 odepreparedviatheconventionalmethodwithoutdelami activematerials(thoseresponsibleforstoringNaorLiions) nationandcrackingandthosebythepresentlyinvented withoutincreasingtheamountsofalnon-activematerials method. DESCRIPTIONOFTHEPREFERRED EMBODIMENTS (e.g.curentcolectorsandseparator)inordertoobtain a minimum overheadweightandamaximum sodium storage 5 capabilityand,hence,amaximizedenergydensity(Wk/kg orWh/Lofcel). Inalescommonlyusedcelconfiguration,asilustrated Thisinventionisdirectedataflexibleandshape-con- inFIG.1(A),eithertheanodeactivematerial(e.g.NaTi, formablerope-likealkalimetal-sulfurbateryexhibitingan (PO2),orNafilm)orthecathodeactivematerial(e.g. exceptionalyhighvolumetricenergydensityandhighgra-10lithium transitionmetaloxideinaLi-ioncelorsulfur/ vimetricenergydensity.Thisdoesnotincludetheso-caled carbonmixtureinaLi-Scel)isdepositedinathinfilm high-temperatureNa-Scelthatmustoperateatatempera- formdirectlyontoacurentcolector,suchasashetof turehigherthanthemeltingpointoftheelectrolyte(typi- copperfoilorAlfoilusingsputering.However,suchathin caly>350°C.)andhigherthanthemeltingpointofsulfur. filmstructurewithanextremelysmalthicknes-direction Theinventedalkalimetal-sulfurbaterycanbeaprimary15dimension(typicalymuch smallerthan50nm,often batery,butispreferablyasecondarybateryselectedfrom necesarilythinerthan10nm)impliesthatonlyasmall analkalimetal-ionbatery(e.g.usingaLiorNaintercala- amountofactivematerialcanbeincorporatedinanelec tioncompound,suchashardcarbonparticles)oranalkali trode(giventhesameelectrodeorcurrentcollectorsurface metal-sulfursecondarybatery(e.g.usingNaorLimetalfoil area),providingalowtotalNaorListoragecapacityperunit as an anode active material). The battery is based on an 20 electrode surface area.Such a thin film must have a thick aqueouselectrolyte,anon-aqueousororganicelectrolyte,a nesslesthan100nmtobemoreresistanttocycling gelelectrolyte,anionicliquidelectrolyte,oramixtureof inducedcracking(fortheanode)ortofacilitateaful organicandionicliquid.Apolymercanbeadedtothese utilizationofthecathodeactivematerial.Suchaconstraint electrolytestoformagel.Theelectrolytedoesnotinclude furtherdiminishesthetotalNaorListoragecapacityandthe thesolid-stateelectrolyte. 25 sodium orlithium storagecapacityperunitelectrodesurface AsilustratedinFIG.1(A)andFIG.1(B),aconventional area.Suchathin-filmbateryhasverylimitedscopeof lithium-ion,sodium-ion,Li—S,orNa-Sbaterycelis aplication. typicalycomposedofananodecurentcolector(e.g.Cu Ontheanodeside,asputeredNaTiz(PO4)3layerthicker foil),ananodeelectrode(anodeactivemateriallayer),a than10nmhasbeenfoundtoexhibitpoorcracking porousseparatorand/oranelectrolytecomponent,acathode 30 resistanceduringbattery charge/discharge cycles.Ittakes electrode(cathodeactivemateriallayer),andacathode butafewcyclestogetfragmented.Onthecathodeside,a curentcolector(e.g.Alfoil).Inamorecommonlyusedcel layerofsulfurthickerthan10nmdoesnotalowlithiumor configuration(FIG.1(B),theanodelayeriscomposedof sodiumionstofulypenetrateandreachfulbodyofthe particlesofananodeactivematerial(e.g.hardcarbon cathodelayer,resultinginapoorcathodeactivematerial particles),aconductive aditive (e.g.expanded graphite 35 utilizationrate.Adesirableelectrodethicknesisatleast100 flakes),andaresinbinder(e.g.SBRorPVDF).Thecathode um (not100nm),withindividualactivematerialparticle layeriscomposedofparticlesofacathodeactivematerial havingadimensiondesirablylesthan10nm.Thus,these (e.g.NaFePO4particlesinaNa-ioncelorS-carboncom- thin-filmelectrodes(withathicknes<10nm)directly positeparticlesinaLi-Scel),aconductiveaditive(e.g. depositedonacurentcolectorfalshortoftherequired carbonblackparticles),andaresinbinder(e.g.PVDF).Both 40thicknesbythre(3)ordersofmagnitude.Asafurther theanodeandthecathodelayersaretypicaly60-10um problem,alofthecathodeactivematerialsarenotvery thick(typicalysignificantlythinerthan20um)togive conductivetobothelectronsandsodium/lithiumions.A risetoapresumablysuficientamountofcurentperunit largelayerthicknesimpliesanexcesivelyhighinternal electrodearea.Usinganactivemateriallayerthicknesof resistanceandapooractivematerialutilizationrate. 10umandthesolid(CuorAlfoil)curentcolectorlayer45 Inotherwords,thereareseveralconflictingfactorsthat thicknesof10umasexamples,theresultingbaterycon- mustbeconsideredconcurentlywhenitcomestothedesign figurationhasacurentcolectorthicknes-to-activemate andselectionofacathodeoranodeactivematerialinterms riallayerthicknesratioof10/10or1/10forconventional ofmaterialtype,size,electrodelayerthicknes,andactive baterycels. materialmassloading.Thusfar,therehasbeennoefective Thisthicknesrangeof60-100um isconsideredan50solutionoferedbyanypriorartteachingtotheseoften industry-acceptedconstraintunderwhichabaterydesigner conflictingproblems.Wehavesolvedthesechallenging normallyworksunder,basedonthecurentslurycoating isues,whichhavetroubledbaterydesignersandelectro process(rolcoatingofactivematerial-binder-additivemix- chemistsalikeformorethan30years,bydevelopinganew tureslury).Thisthicknesconstraintisduetoseveral procesofproducingalkalimetal-sulfurbateriesasherein reasons:(a)theexistingbateryelectrodecoatingmachines 5disclosed. arenotequipedtocoatexcesivelythinorexcesively Thepriorartsodium orlithiumbaterycel,including thickelectrodelayers;(b)athinerlayerispreferedbased Li—SandroomtemperatureNa-Scel,istypicalymade ontheconsiderationofreducedlithiumiondifusionpath byaprocessthatincludesthefollowingsteps:(a)Thefirst lengths;but,tothinalayer(e.g.<60um)doesnotcontain stepismixingparticlesoftheanodeactivematerial(e.g. a sufficientamount of an active alkalimetal ion storage 60 hard carbon particles),a conductive filer (e.g.expanded material(hence,insuficientcurrentoutput);(c)thicker graphiteflakes),aresinbinder(e.g.PVDF)inasolvent(e.g. electrodesarepronetodelaminateorcrackupondryingor NMP)toformananodeslury.Onaseparatebasis,particles handlingafterrol-coatingofslury;and(d)thickercoating ofthecathodeactivematerial(e.g.sodiummetalphosphate requiresanexcesivelylongheatingzone(itisnotunusual particlesfortheNa-ioncelandLFPparticlesfortheLi-ion tohaveaheatingzonelongerthan10meters,makingthe65cel),aconductivefiler(e.g.acetyleneblack),aresinbinder manufacturingequipmentveryexpensive).Thisconstraint (e.g.PVDF)aremixedanddispersedinasolvent(e.g.NMP) hasmadeitimposibletofrelyincreasetheamountof toformacathodeslury.(b)Thesecondstepincludes

PDF Image | FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur--023

PDF Search Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

Original File Name Searched:

US9905856.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP