FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

PDF Publication Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES ( flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 026

17 18 US 9,905,856 B1 than95%byvolume.Thebackboneofthefoamorthefoam Walsforcesinthethicknesdirectionwithaninter-gra walsformsanetworkofelectron-conductingpathways. pheneplanespacingofaproximately0.354nmiscom Thesefoam structurescanbereadilymadeintoany monlyreferredtoasamulti-layergraphene.Amulti-layer cros-sectionalshape.Theyalsocanbeveryflexible;typi grapheneplatelethasupto300layersofgrapheneplanes caly,non-metallicfoamsbeingmoreflexiblethanmetallic 5 (<100nm inthickness),butmoretypicallyupto30gra foams.However,metalnano-fiberscanbemadeintohighly pheneplanes(<10nminthicknes),evenmoretypicalyup flexiblefoams.Sincetheelectrolyteisineitheraliquidor to20grapheneplanes(<7nminthicknes),andmost gelstate,theresultingcablebattery canbevery flexibleand typicalyupto10grapheneplanes(commonly referredtoas canbemadetobeconformaltoesentialyanyoddshape. few-layergrapheneinscientificcommunity).Single-layer Evenwhenthesaltconcentrationinaliquidsolventishigh 10grapheneandmulti-layergrapheneshetsarecollectively (e.g.from2.5Mto15M),thefoamstructurecontaining caled“nanographeneplatelets”(NGPs),asshownisFIG. electrolyteinsidetheirporesremainsdeformable,bendable, 2.Grapheneshets/platelets(colectively,NGPs)areanew twistable,andconformabletoevenanodshape. clasofcarbonnanomaterial(a2-Dnanocarbon)thatis Insomeembodiments,theelectricalyconductiveporous distinctfromthe0-Dfulerene,the1-DCNTorCNF,and rodinthefirstorsecondelectrodecontainsaconductive15the3-Dgraphite.Forthepurposeofdefiningtheclaimsand polymerfiber,acarbon/graphitefiber,afibertow,fiberyarn, asiscommonlyunderstoodintheart,agraphenematerial fiberbraid,fiberknitstructurethatismadeofaconductive (isolatedgrapheneshets)isnot(anddoesnotinclude)a polymer,carbon,orgraphitefiberandisporous. carbonnanotube (CNT)oracarbonnano-fiber(CNF). Preferably,substantialy alofthepores intheoriginal Inoneprocess,graphenematerialsareobtainedbyinter conductiveporousrodsorfilamentsarefiledwith the20calatingnaturalgraphiteparticleswithastrongacidand/or electrodeactivematerial(anodeorcathode),electrolyte,and anoxidizingagenttoobtainagraphiteintercalationcom optionalconductiveaditive(nobinderresinneeded).Since pound(GIC)orgraphiteoxide(GO),asilustratedinFIG. therearegreatamountsofpores(moretypicaly70-99%or 4(A)andFIG.4(B)(schematicdrawings).Thepresenceof preferably85%-99%)relativetotheporewalsorconduc- chemicalspeciesorfunctionalgroupsintheinterstitial tivepathways(1-30%),verylitlespaceiswasted(“being 25 spacesbetweengrapheneplanesinaGIC orGO servesto wasted”meansnotbeingoccupiedbytheelectrodeactive increasetheinter-graphenespacing(dom,asdeterminedby materialandelectrolyte),resultinginhighproportionof X-raydifraction),therebysignificantlyreducingthevander electrodeactivematerial-electrolytemixture(highactive Waalsforcesthatotherwiseholdgrapheneplanestogether materialloadingmass). alongthec-axisdirection.TheGIC orGO ismostoften Insuchbateryelectrodeconfigurations(e.g.FIG.1(C),30 produced by immersingnaturalgraphitepowder (10 in theelectronsonlyhavetotravelashortdistance(halfofthe FIG.4(B)inamixtureofsulfuricacid,nitricacid(an poresize,onaverage;e.g.nanometersorafewmicrometers) oxidizingagent),andanotheroxidizingagent(e.g.potas beforetheyarecolectedbytheporewallssinceporewals siumpermanganateorsodiumperchlorate).Theresulting arepresenteverywherethroughouttheentireelectrodestruc- GIC(102)isactualysometypeofgraphiteoxide(GO) ture(theconductivefoam servingasacurrentcollector).35particlesifanoxidizingagentispresentduringtheinterca Theseporewallsforma3-Dnetworkofinterconected lationprocedure.ThisGICorGOisthenrepeatedlywashed electron-transporting pathways with minimal resistance andrinsedinwatertoremoveexcessacids,resultingina Additionally,ineachanodeelectrodeorcathodeelectrode, graphiteoxidesuspensionordispersion,whichcontains alelectrodeactivematerialparticlesarepre-dispersedina discreteandvisualydiscerniblegraphiteoxideparticles liquid electrolyte (no wetability isue),eliminating the 40 dispersedinwater.Inordertoproducegraphenematerials, existenceofdrypocketscommonlypresentinanelectrode onecanfolowoneofthetwoprocesingroutesafterthis preparedbytheconventionalprocesofwetcoating,drying, rinsingstep,brieflydescribedbelow: packing, and electrolyte injection. Thus, the presently Route 1 involves removing water from the suspension to inventedprocesdeliversatotalyunexpectedadvantage obtain“expandablegraphite,”whichisesentialyamassof overtheconventionalbatterycelproductionprocess. 45 driedGIC ordriedgraphiteoxideparticles.Upon exposure Inapreferedembodiment,theanodeactivematerialisa ofexpandablegraphitetoatemperatureintherangeof prelithiatedorpre-sodiatedversionofgrapheneshets typicaly80-1,050°C.forapproximately30secondsto2 selectedfrompristinegraphene,grapheneoxide,reduced minutes,theGICundergoesarapidvolumeexpansionbya grapheneoxide,graphenefluoride,graphenechloride,gra- factorof30-300toform“graphiteworms”(104),whichare phenebromide,graphene iodide,hydrogenated graphene,50 each acolection ofexfoliated,butlargely un-separated nitrogenatedgraphene,chemicallyfunctionalizedgraphene, graphiteflakesthatremaininterconected. oracombinationthereof.Thestartinggraphiticmaterialfor InRoute1A,thesegraphiteworms(exfoliatedgraphiteor producinganyoneoftheabovegraphenematerialsmaybe “networksofinterconected/non-separatedgraphiteflakes”) selectedfromnaturalgraphite,artificialgraphite,meso- canbere-compressedtoobtainflexiblegraphiteshetsor phasecarbon,meso-phasepitch,meso-carbonmicro-bead,5 foils(106)thattypicalyhaveathicknesintherangeof0.1 softcarbon,hardcarbon,coke,carbonfiber,carbonnano- mm (100um)-0.5mm (500um).Alternatively,onemay fiber,carbonnano-tube,oracombinationthereof.Graphene choosetousealow-intensityairmillorshearingmachineto materialsarealsoagoodconductiveaditiveforboththe simplybreakupthegraphitewormsforthepurposeof anodeandcathodeactivematerialsofanalkalimetalbatery. producingtheso-caled“expandedgraphiteflakes”(108) Theconstituentgrapheneplanesofagraphitecrystalite60 whichcontainmostlygraphiteflakesorplateletsthickerthan inanaturalorartificialgraphiteparticlecanbeexfoliated 10nm(hence,notananomaterialbydefinition). and extracted or isolated to obtain individual graphene In Route 1B , the exfoliated graphite is subjected to shetsofhexagonalcarbonatoms,whicharesingle-atom high-intensitymechanicalshearing(e.g.usinganultrasoni thick,provided theinter-planarvanderWaals forcescanbe cator,high-shearmixer,high-intensityairjetmill,orhigh overcome.Anisolated,individualgrapheneplaneofcarbon 65 energybalmill)toform separatedsingle-layerandmulti atomsiscommonlyreferedtoassingle-layergraphene.A layergrapheneshets(colectivelycaledNGPs,12),as stackofmultiplegrapheneplanesbondedthroughvander disclosedinourU.S.aplicationSer.No.10/858,814(Jun.

PDF Image | FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

PDF Search Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

Original File Name Searched:

US9905856.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)