logo

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

PDF Publication Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES ( flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 030

US 9,905,856 B1 phonium,andtrialkylsulfonium.CommonanionsofRTILS ionicliquid)andasulfursource(e.g.metalpolysulfide) 25 26 disolvedordispersed inthesolvent.Thiselectrolyte CH,CHBFz; CF3BF3, CF3BFz; n-C2F%BF3; canbethesameelectrolyteasintheintendedbatery; n-C_F,BF3,PF6,CF3C02,CF3S03;N(SO,CF3)2; c)Preparingananode; N(COCF3)(S02CF3),N(SO2F)2,N(CN)2,C(CN)3,5 d)Bringingtheintegrallayerofporousgraphene/carbon/ SCN-,SeCNC,CuCl2,A1C14,F(HF)2.37,etc.Relatively graphitestructureandtheanodeinioniccontactwith include,butnotlimitedto,BF4,B(CN),,CH BF,, speaking,thecombinationofimidazolium-orsulfonium basedcationsand complexhalideanionssuchasA1C14", BF4,CF2C02,CF2803,NTf2,N(SO,F)2,orF(HF)2,3 resultsinRTILswith goodworkingconductivities. 10 RTILs can possess archetypical properties such as high theelectrolyte(e.g.by immersingalthesecomponents inachamberthatisexternaltotheintendedLi-Scel, orencasingthesethrecomponentsinsidetheLi-S cel)and imposing an electriccurentbetween the anodeandtheintegrallayerofporousgraphene/carbon/ graphitestructure(servingasacathode)with asufi cientcurentdensity forasuficientperiodoftimeto intrinsicionicconductivity,highthermalstability,lowvola tility,low (practicalyzero)vaporpresure,non-flammabil ity,theabilitytoremainliquidatawiderangeoftempera electrochemicalydepositnano-scaledsulfurparticles turesaboveandbelowroom temperature,highpolarity,high 15 viscosity,andwideelectrochemicalwindows.Theseprop erties,exceptforthehighviscosity,aredesirableatributes whenitcomestousinganRTILasanelectrolyteingredient (asaltand/orasolvent)inabatery. orcoatingonthegraphenesurfacesorinternalpore wallsofagraphite/carbonstructuretoform apre sulfurizedfoam structure(e.g.arodorlayer); TheSparticlesorcoatinginthepresently invented pre-sulfurizedfoam structuretypicalyhaveathicknesor ThespecificcapacityandspecificenergyofaLi–Scel20diametersmalerthan20nm (preferablyandtypicaly<10 orNa-Scelaredictatedbytheactualamountofsulfurthat nm,morepreferably<5nm,andfurtherpreferably<3nm) canbeimplementedinthecathodeactivelayer(relativeto andwhereinthenano-scaledsulfurparticlesorcoating othernon-activeingredients,suchasthebinderresinand ocupyaweightfractionofatleast70%(preferably>80%, conductivefiler)andtheutilizationrateofthissulfur morepreferably>90%,andmostpreferably>95%)basedon amount(i.e.theutilizationefficiencyofthecathodeactive 25thetotalweightsofthesulfurparticlesorcoatingandthe materialortheactualproportionofSthatactivelypartici graphenematerialcombined.Itisadvantageoustodepositas patesinstoringandreleasinglithiumions).Ahigh-capacity muchSasposibleyetstilmaintainultra-thinthicknesor andhigh-energyLiSorNa—Scelrequiresahighamount diameteroftheScoatingorparticles(e.g.>80%and<3nm; ofSinthecathodeactivelayer(i.e.relativetotheamounts >90% and <5nm;and >95% and <10nm ,etc.). ofnon-activematerials,suchasthebinderresin,conductive30 Therodofporousgraphene/graphite/carbonstructure aditive,andothermodifyingorsuportingmaterials)and recitedinstep(a)maycontainagraphenematerialoran ahighSutilizationeficiency).Thepresentinventionpro- exfoliatedgraphitematerial,whereinthegraphenematerial videssuchasulfurorsulfide-containingcathodeactivelayer isselectedfrompristinegraphene,grapheneoxide,reduced andamethodofproducingsuchacathodeactivelayer(e.g. grapheneoxide,graphenefluoride,graphenechloride,gra apre-sulfurizedactivecathodelayer). 35phenebromide,grapheneiodide,hydrogenatedgraphene, Itmaybenotedthatsulfurorasulfurcompound(e.g. nitrogenatedgraphene,boron-dopedgraphene,nitrogen particlesoflithiumpolysulfide,sodiumpolysulfide,carbon dopedgraphene,chemicalyfunctionalizedgraphene,ora polymercompound,sulfurcariedbyactivatedcarbonpar- combinationthereof,andwhereintheexfoliatedgraphite ticles,sulfurorsulfidecariedongraphenesurfaces,etc.) materialisselectedfromexfoliatedgraphiteworms, maybeincorporatedintotheporesofafoamstructureas40expandedgraphiteflakes,orrecompresedgraphiteworms describedearlierandilustratedinFIG.1(D)andFIG.1(E). orflakes(muststilexhibitahighspecificsurfacearea, Aditionalyandpreferably,ahighlyinovativemethod >10m2/g,acesibletoelectrolyte). maybeusedtoincorporatesulfurorsulfurcompound,with Once alayerofporousgraphene/carbon/graphitestruc orwithouttheeventualelectrolyte,intoafoamstructure. tureisprepared,thislayercanbeimmersedinanelectrolyte Suchapre-sulfurizationmethodenablesustoachieveboth 45 (preferably liquid electrolyte),which comprisesasolvent ahighsulfurcontentandthinsulfurcoating/particlesizes, andasulfursourcedisolvedordispersedinthesolvent. twofeaturesthatwerepreviouslyregardedasmutually Thislayerbasicalyservesasacathodeinanexternal exclusive.Asanexampleofsulfurpre-loadingprocedures, electrochemicaldepositionchamber. this method comprises the following four steps,(a)-(d): Subsequently, an anode layer is also immersed in the a)Preparingalayerofporousgraphene/graphite/carbon 50 chamber.Anyconductivematerialcanbeusedasananode structurehavingporesandmassivesurfaceswitha material,butpreferablythislayercontainssomelithiumor specificsurfaceareagreaterthan10m2/g(these sodium.Insuchanarrangement,thelayerofporousgra surfacesmustbeaccessibletoelectrolyte).Theporous phene/carbon/graphitestructureandtheanodeareinionic graphene/carbon/graphitestructurehaveaspecificsur- contactwiththeelectrolyte.Anelectriccurrentisthen faceareapreferably >50m?lgandmorepreferably 5 supliedbetweentheanodeandtheintegrallayerofporous >700m2/g,andmostpreferably>1,0m2/g.Many graphenestructure(servingasacathode)withasuficient typesofgraphene/carbon/graphitefoamstructuresmay curentdensityforasuficientperiodoftimetoelectro beused,includingcarbonfoam,graphitefoam,carbon chemicallydepositnano-scaledsulfurparticlesorcoatingon aerogelfoam,graphenefoam,grapheneaerogelfoam, thegraphenesurfacestoformthepre-sulfurizedactive electron-spuncarbonfoam,carbon/graphitefibermat,60 cathodelayer.Therequiredcurrentdensitydependsuponthe carbon/graphitefibercloth,carbon/graphitecarbon desiredspedofdepositionanduniformityofthedeposited paper,carbonnano-fibermat/paper/cloth,carbonnano- material. tube mat/paper/cloth, activated carbon particles ThiscurentdensitycanbereadilyadjustedtodepositS (bondedtogethertoformafoam,forinstance),and particlesorcoatingthathaveathicknesordiametersmaller exfoliatedgraphite foam,etc. 65 than20nm (preferably<10nm,morepreferably<5nm,and b)Preparinganelectrolytecomprisingasolvent(e.g. furtherpreferably<3nm).Theresultingnano-scaledsulfur non-aqueoussolvent,suchasorganicsolventandor particlesorcoatingocupyaweightfractionofatleast70%

PDF Image | FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur--030

PDF Search Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

Original File Name Searched:

US9905856.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP