logo

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

PDF Publication Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES ( flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 031

27 28 US 9,905,856 B1 (preferably>80%,morepreferably>90%,andmostprefer- byweight.Herewehavefurthersurprisinglyobservedthat ably>95%)basedonthetotalweightsofthesulfurparticles thekeytoenablingahighspecificcapacityatthecathode or coating and the graphene material combined . under high rate conditions is to maintain a high S loading Inonepreferedembodiment,thesulfursourceisselected andstilkeeptheScoatingorparticlesizeassmallas from M,S,whereinxisanintegerfrom 1to3andyisan 5 posible,andthisisaccomplishedby usingthepresently integerfrom 1to10,andMisametalelementselectedfrom inventedpre-sulfurizationmethod. analkalimetal,analkalinemetalselectedfromMgorCa, Theelectronscomingfromorgoingoutthroughthe atransitionmetal,ametalfromgroups13to17ofthe externalloadorcircuitmustgothroughtheconductive periodictable,oracombinationthereof.Inadesired aditivesinaconventionalsulfurcathode)oraconductive embodiment,themetalelementM isselected from Li,Na, 10 framework (e.g.exfoliated graphitemeso-porousstructure K,Mg,Zn,Cu,Ti,Ni,Co,Fe,orAl.Inaparticularlydesired ornano-structureofconductivegrapheneshetsasherein embodiment,MS,isselectedfromLi2S6,Li2S7,Li2S3, disclosed)toreachthecathodeactivematerial.Sincethe Li2S9,Li2S10,Na2S6,Na2S7,Na2S3,Na2S,NaS10,K2S6, cathodeactivematerial(e.g.sulfurorlithiumpolysulfide)is apoorelectronicconductor,theactivematerialparticleor Inoneembodiment,theanodecomprisesananodeactive 15 coatingmustbeasthinaspossibletoreducetherequired materialselectedfromanalkalimetal,analkalinemetal,a electrontraveldistance. transitionmetal,ametalfrom groups13to17oftheperiodic Furthermore,thecathodeinaconventionalLi–Scel table,oracombinationthereof.Thisanodecanbethesame typicalyhaslesthan70%byweightofsulfurinacom anodeintendedforinclusioninaLi-Scel. positecathodecomposedofsulfurandtheconductiveaddi Thesolventandlithium orsodium saltusedinthe20tive/support.Evenwhenthesulfurcontentinthepriorart electrochemicaldepositionchambermaybeselectedfrom compositecathodereachesorexceds70%byweight,the anysolventorsaltinthelistgivenaboveforalithium-sulfur specificcapacityofthecompositecathodeistypically orsodium-sulfurbattery. significantlylowerthanwhatisexpectedbasedontheoreti Afteranextensiveandin-depthresearchefort,wehave calpredictions.Forinstance,thetheoreticalspecificcapacity come to realize thatsuch apre-sulfurization surprisingly 25 ofsulfuris1,675mAh/g.Acompositecathodecomposedof solvesseveralmostcriticalisuesasociatedwithcurent 70%sulfur(S)and30%carbonblack(CB),withoutany Li–SorNa-Scels.Forinstance,thismethodenablesthe binder,shouldbecapableofstoringupto1,675x70%=1,172 sulfurtobedepositedinathincoatingorultra-fineparticle mAh/g.Unfortunately,theobservedspecificcapacityis form,thus,providingultra-shortlithiumiondifusionpaths typicalylesthan75%or879mAh/g(oftenlesthan50% and,hence,ultra-fastreactiontimesforfastbatterycharges 30 or586mAh/ginthisexample)ofwhatcouldbeachieved. anddischarges.Thisisachievedwhilemaintainingarela- Inotherwords,theactivematerialutilizationrateistypically tivelyhighproportionofsulfur(theactivematerialrespon lesthan75% (oreven <50%).Thishasbeenamajorisue sible forstoringlithium)and,thus,high specific lithium intheartofLi– Scelsandtherehasbeennosolutiontothis storagecapacityoftheresultingcathodeactivelayerin problem.Mostsurprisingly,theimplementationofmassive termsofhighspecificcapacity(mAh/g,basedonthetotal35 graphenesurfacesassociatedwithaporousgraphenestruc weightofthecathodelayer,includingthemassesofthe tureasaconductivesupportingmaterialforsulfurorlithium activematerial,S,supportinggrapheneshets,binderresin, polysulfidehasmadeitposibletoachieveanactivemate and conductive filer). rialutilization rateoftypically >>80%,more often greater Itisofsignificancetonotethatonemightbeabletouse than90%,and,inmanycases,closeto95%-99%. apriorartproceduretodepositsmalSparticles,butnota40 Alternatively,thecathodeactivematerial(e.g.Sora highSproportion,ortoachieveahighproportionbutonly sulfurcompound)maybedepositedonorbondedbya inlargeparticlesorthickfilmform.But,thepriorart functionalmaterialornano-structuredmaterial.Thesulfur procedureshavenotbeenabletoachievebothatthesame compoundmaybeselectedfromorgano-sulfur,polymer time.Thisiswhyitissuchanunexpectedandhighly sulfur,carbon-sulfur,metalsulfide,S-Sb,S-Bi,S-Se, advantageousthingtoobtainahighsulfurloadingandyet,45 S-Temixture,oracombinationthereof.Thesespeciesmay concurrently,maintaininganultra-thin/smallthicknes/di- besuportedbyaconductivecarierparticle,suchas ameterofsulfur.Thishasnotbeenposiblewithanyprior activatedcarbonorsmallgraphenepiece.Thefunctional art sulfur loading techniques.For instance,we have been materialornano-structured materialmay be selected from abletodepositnano-scaledsulfurparticlesorcoatingthat thegroupconsistingof(a)anano-structuredorporous occupy a >90 % weight fraction of the cathode layer and yet 50 disordered carbon material selected from a soft carbon,hard maintainingacoatingthicknesorparticlediameter<3nm. carbon,polymericcarbonorcarbonizedresin,meso-phase Thisisquiteafeatintheartoflithium-sulfurbateries.As carbon,coke,carbonizedpitch,carbonblack,activated anotherexample,wehaveachieveda>95%Sloadingatan carbon,nano-celularcarbonfoamorpartialygraphitized average S coating thickness of 4.8-7nm . carbon;(b)anano grapheneplateletselectedfrom asingle ElectrochemistsormaterialsscientistsintheartofLi–S5layergrapheneshetormulti-layergrapheneplatelet;(c)a batterieswould expectthatagreateramountofhighly carbonnanotubeselectedfromasingle-walledcarbonnano conductinggrapheneshetsorgraphiteflakes(hence,a tubeormulti-walledcarbonnanotube;(d)acarbonnano smalleramountofS)inthecathodeactivelayershouldlead fiber,nano-wire,metaloxidenano-wireorfiber,conductive toabeterutilizationofS,particularlyunderhighcharged polymernano-fiber,oracombinationthereof;(e)acarbo dischargerateconditions.Contrarytotheseexpectations,we 60nyl-containingorganicorpolymericmolecule;(f)afunc haveobservedthatthekeytoachievingahighSutilization tionalmaterialcontainingacarbonyl,carboxylic,oramine eficiencyisminimizingtheScoatingorparticlesizeandis group;andcombinationsthereof.Inapreferedembodi independentoftheamountofSloadedintothecathode ment,thefunctionalmaterialornano-structuredmaterialhas providedtheScoatingorparticlethickness/diameteris aspecificsurfaceareaofatleast500mo/g,preferablyatleast smalenough(e.g.<10nm,orevenbeterif<5nm).The65 1,000m2/g. problem hereisthatithasnotbeenposibletomaintaina Typicaly,thecathodeactivematerials(sulfurormetal thinScoatingorsmalparticlesizeifSishigherthan50% sulfide)arenotelectricalyconducting.Hence,inone K2S7,K2S8,K2S,orK2S10.

PDF Image | FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur--031

PDF Search Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

Original File Name Searched:

US9905856.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP