logo

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

PDF Publication Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES ( flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 033

31 32 ficientsbetweennickelandgraphene,riplesandwrinkles10 were formed on the graphene films. Four types of foams madeinthisexamplewereusedasacurentcolectorinthe presentlyinventedlithiumbateries:Nifoam,CVD gra phene-coatedNiform,CVD graphenefoam (Nibeing Example4:PreparationofGrapheneOxide(GO) andReducedGrapheneOxide(RGO)NanoShets fromNaturalGraphitePowder US 9,905,856 B1 “Thre-dimensionalflexibleandconductiveinterconected rateofaproximately1.5degreC./minwithreleaseof graphenenetworksgrownbychemicalvapordeposition," presureatarateofapproximately2psi/min.Finalfoam NatureMaterials,10,424-428(2011).Nickelfoam,aporous temperatureswere630°C.and800°C.Duringthecooling structurewithaninterconected3Dscafoldofnickelwas cycle,presureisreleasedgradualytoatmosphericcondi chosenasatemplateforthegrowthofgraphenefoam.5 tions.Thefoamwasthenheattreatedto1050°C.(carbon Briefly,carbonwasintroducedintoanickelfoambydecom- ized)underanitrogenblanketandthenheattreatedin posingCH4at1,000°C.underambientpressure,andgra- separaterunsinagraphitecrucibleto2500°C.and2800°C. phenefilmswerethendepositedonthesurfaceofthenickel (graphitized)inArgon.Thegraphitefoamlayersareavail foam.Duetothediferenceinthethermalexpansioncoef ableinathicknesrangeof75-50um. etchedaway),andconductivepolymerbondedCVDgra-15 NaturalgraphitefromHuadongGraphiteCo.(Qingdao, phenefoam. China)wasusedasthestartingmaterial.GO wasobtained Inordertorecover(separate)graphenefoamfromthe byfollowingthewell-knownmodifiedHummersmethod, supportingNifoam,Niframewasetchedaway.Inthe whichinvolvedtwooxidationstages.Inatypicalprocedure, procedureproposedbyChen,etal.,beforeetchingawaythe thefirstoxidationwasachievedinthefolowingconditions: nickelskeletonbyahotHCl(orFeCl3)solution,athinlayer2010mgofgraphitewasplacedina10mLboilingflask. ofpoly(methylmethacrylate)(PMMA)wasdepositedon thesurfaceofthegraphenefilmsasasuporttopreventthe Then,20gofK2S208,20gofP205,and40mLofa graphenenetworkfromcolapsingduringnickeletching. concentratedaqueoussolutionofH,SO,(96%)wereadded AfterthePMMAlayerwascarefulyremovedbyhot intheflask.Themixturewasheatedunderrefluxfor6hours acetone,afragilegraphenefoam samplewasobtained.The 25 andthenletwithoutdisturbingfor20hoursatroom tem useofthePMMAsupportlayerwasconsideredcriticalto perature.Oxidizedgraphitewasfilteredandrinsedwith preparingafre-standingfilmofgraphenefoam.Instead,a abundantdistiledwateruntilneutralpH.Awetcake-like conductingpolymerwasusedasabinderresintohold materialwasrecoveredattheendofthisfirstoxidation. graphenetogetherwhileNiwasetchedaway.Thegraphene Forthesecondoxidationprocess,thepreviouslycolected foam orNifoamthicknesrangewasfrom35umto600um.30wetcakewasplacedinaboilingflaskthatcontains69mL ThelayersofNifoamortheCVDgraphenefoamused ofaconcentratedaqueoussolutionofH,SO.(96%).The hereinisintendedasconductiveporouslayers(CPL)to flaskwaskeptinanicebathas9gofKMnO4wasslowly accommodatetheingredients(anodeorcathodeactivemate added.Carewastakentoavoidoverheating.Theresulting rial+optionalconductiveaditive+liquidelectrolyte)forthe mixturewasstiredat35°C.for2hours(thesamplecolor anodeorcathodeorboth.Forinstance,Sinanoparticlesor35turningdarkgren),folowedbytheaditionof140mLof surface-stabilizedLiparticlesdispersedinanorganicliquid water.After15min,thereactionwashaltedbyadding420 electrolyte(e.g.1.0-5.5MofLiPF,disolvedinPC-EC) mLofwaterand15mLofanaqueoussolutionof30wt% weremadeintogel-likemass,whichwasdeliveredtoa H2O2.Thecolorofthesampleatthisstageturnedbright poroussurfaceofaNifoamcontinuouslyfedfromafeeder yellow.Toremovethemetallicions,themixturewasfiltered rolertomakeananodeelectroderoler(asinSchematicA 40andrinsedwitha1:10HClaqueoussolution.Thecolected material was gently centrifuged at 2700 g and rinsed with Graphene-suportedlithiumpolysulfidenanoparticles deionizedwater.Thefinalproductwasawetcakethat dispersedinthesameliquidelectrolyteweremadeinto contained1.4wt%ofGO,asestimatedfromdryextracts. cathodeslury,whichwassprayedovertwoporoussurfaces Subsequently,liquiddispersionsofGOplateletswere ofacontinuousNifoamlayertoformacathodeelectrode.45obtainedbylightlysonicatingwet-cakematerials,which ofFIG.1(C). AporousfoamrodcontainingSinanoparticle-electrolyte WA Surfactant-stabilizedRGO (RGO-BS)wasobtainedby waswrappedaroundbyaporousseparatorlayer(porous dilutingthewet-cakeinanaqueoussolutionofsurfactants PE-PPcopolymer),whichinturnwaswrappedaroundbya insteadofpurewater.Acommerciallyavailablemixtureof lithiumsulfide-basedcathodelayer.Thecylindricalstructure 50 cholatesodium (50wt.%)anddeoxycholatesodium (50wt. isthenencasedinathinpolymersheathtoobtainacable- %)saltsprovidedbySigmaAldrichwasused.Thesurfactant mixtureimpregnatedintothefoampores(thefirstelectrode) shapelithium-ionbatery. Example3:GraphiticFoam-BasedConductive PorousLayersfromPitch-BasedCarbonFoams weight fractionwas 0.5wt.%.Thisfractionwas kept constantforalsamples.Sonicationwasperformedusinga BransonSonifierS-250Aequippedwitha13mm step 5disruptorhornanda3mm taperedmicro-tip,operatingata 20kHzfrequency.Forinstance,10mL ofaqueoussolutions Pitchpowder,granules,orpeletsareplacedinaalumi- containing0.1wt.%ofGOwassonicatedfor10minand nummoldwiththedesiredfinalshapeofthefoam.Mit subsequentlycentrifugedat2700gfor30mintoremoveany subishiARA-24meso-phasepitchwasutilized.Thesample non-disolvedlargeparticles,aggregates,andimpurities. isevacuated to lesthan 1 torand thenheated to a60 Chemicalreductionofas-obtainedGO toyieldRGO was temperatureaproximately30°C.Atthispoint,the conductedbyfolowingthemethod,whichinvolvedplacing vacuumwasreleasedtoanitrogenblanketandthena 10mLofa0.1wt.%GOaqueoussolutioninaboilingflask presureofupto1,0psiwasaplied.Thetemperatureof of50mL.Then,10uLofa35wt.%aqueoussolutionof thesystemwasthenraisedto800°C.Thiswasperformed NH (hydrazine)and70mLofa28wt.%ofanaqueous atarateof2degreC./min.Thetemperaturewasheldfor65 solutionofNH OH (ammonia)wereaddedtothemixture, atleast15minutestoachieveasoakandthenthefurnace whichwasstabilizedbysurfactants.Thesolutionwasheated powerwasturnedofandcooledtoroomtemperatureata to90°C.andrefluxedfor1h.ThepHvaluemeasuredafter ter

PDF Image | FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur--033

PDF Search Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

Original File Name Searched:

US9905856.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP