logo

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

PDF Publication Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES ( flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 036

US 9,905,856 B1 38 AcertainamountofthedriedTPMparticlesisthenput and,separately,impregnatedafoamedcathodecurentcol intomuflefurnaceandcalcinedat40°C.-60°C.for25lectorwiththesecondsuspensiontoformacathodelayer. hoursunderairpurgingtoremovethecarboncontentfrom Theanodelayer,aporousseparatorlayer,andthecathode thenanocomposite,producinggraphene-freyelow-color layerwerethenassembledandhousedinapouchtoforma siliconnanopowders.BothSinanopowderandgraphene cel.Withtheinstantmethod,typicalynobinderresinis wrappedSinanoparticleswereusedasahigh-capacity neededorused,saving8%weight(reducedamountof 37 yelowpasteandblendtheyelowpastetopowders.The cathodecurentcolector.Thepouchwasthensealed.In as-preparednanoparticlehasaSSAvaluerangeof30m?lg otherexamples,weimpregnatedafoamedanodecurent to20m2/gduetodiferentratioofgraphenecontents colectorwiththefirstsuspensiontoform ananodelayer anodeactivematerial. 10 non-activematerials). Thecyclicvoltammetry(CV)measurementswerecaried Example14:Graphene-EnhancedTinOxide outusinganArbinelectrochemicalworkstationatatypical ParticulatesasanAnodeActiveMaterial scanning rateof 1mV/s.In addition,theelectrochemical performances ofvarious celswere also evaluatedby gal Tinoxide(SnO2)nanoparticles,ananodeactivematerial,15vanostaticcharge/dischargecyclingatacurentdensityof wereobtainedbythecontroledhydrolysisofSnC14.5H20 from50mA/gto10Alg.Forlong-termcyclingtests, withNaOHusingthefolowingprocedure:SnC14.5H20 multi-chanelbaterytestersmanufacturedbyLANDwere (0.95g,2.7m-mol)andNaOH(0.212g,5.3m-mol)were used. disolvedin50mL ofdistiledwatereach.TheNaOH Itmaybenotedthat,inlithium-ionbateryindustry,itis solutionwasadeddrop-wiseundervigorousstiringtothe20acommonpracticetodefinethecyclelifeofabateryasthe tinchloridesolutionatarateof1mL/min.Thissolutionwas numberofcharge-dischargecyclesthatthebaterysufers homogenizedbysonicationfor5min.Subsequently,the 20%decayincapacitybasedontheinitialcapacitymea resultinghydrosolwasreactedwiththeGOdispersionfor3 suredaftertherequiredelectrochemicalformation.The hours.Tothismixedsolution,fewdropsof0.1MofH,SO. samedefinitionforthecyclelifeofaLi–Sorroom wereaddedtofloculatetheproduct.Theprecipitatedsolid 25temperatureNa-Scelishereinfollowed. was colectedby centrifugation,washed withwaterand ethanol,anddriedinvacuum.Thedriedproductwasheat treatedat40°C.for2hunderAratmosphere. Example 15:PreparationandElectrochemical TestingofVariousBateryCels Example16:RepresentativeTestingResults Foreach sample,severalcurentdensities(representing 30 charge/dischargerates)wereimposedtodeterminetheelec trochemicalresponses,alowingforcalculationsofenergy densityandpowerdensityvaluesrequiredoftheconstruc Formostoftheanodeandcathodeactivematerials tionofaRagoneplot(powerdensityvs.energydensity). investigated,wepreparedalkalimetal-sulfurcelsoralkali ShowninFIG.5areRagoneplots(gravimetricandvolu metalion-sulfurcelsusingboth thepresentlyinvented 35metricpowerdensityvs.energydensity)ofNa-ionbatery celscontaininghardcarbonparticlesastheanodeactive Withtheconventionalmethod,atypicalanodecomposi materialandactivatedcarbon/sulfurcompositeparticlesas tionincludes85wt.%activematerial(e.g.,Sn-or thecathodeactivematerials.Twoofthe4datacurvesarefor Na2C2H404-coatedgrapheneshetsforNaion-sulfur thecelspreparedacordingtoanembodimentofinstant anode;graphiteorSiparticlesforLiion-sulfuranode),7wt.40inventionandtheothertwoby theconventionalslury %acetyleneblack(Super-P),and8wt.%polyvinylidene coatingofelectrodes(rol-coatingofslury).Severalsig fluoridebinder(PVDF,5wt.%solidcontent)disolvedin nificantobservationscanbemadefromthesedata: N-methyl-2-pyrolidinoe(NMP).Aftercoatingthesluries Boththegravimetricandvolumetricenergydensitiesand onCu foil,theelectrodesweredriedat120°C.invacuum powerdensitiesoftheroom-temperaturesodium ion-Sbat for2htoremovethesolvent.Cathodelayersaremadeina45 terycelspreparedbythepresentlyinventedmethod(de similarmanner(usingAlfoilasthecathodecurentcolec- notedas“cable”inthefigurelegend)aresignificantlyhigher tor).Ananodelayer,separatorlayer(e.g.Celgard2400 thanthoseoftheircounterpartspreparedviatheconven membrane),andacathodelayerarethenlaminatedtogether tionalrol-coatingmethod(denotedas"conventional”).A andhousedinaplastic-Alenvelop.Thecelistheninjected changefromananodethicknesof150um(coatedonaflat with1MLiPF orNaPF,electrolytesolutiondissolvedina50 solidCufoil)toathicknessof225um (alaccommodated mixtureofethylenecarbonate(EC)anddiethylcarbonate inporesofaNifoamhaving85%porosity)andacorre (DEC)(EC-DEC,1:1v/v).Insomecels,ionicliquidswere spondingchangeinthecathodetomaintainabalanced usedastheliquidelectrolyte.Thecelassembliesweremade capacityratioresultsinagravimetricenergydensity inanargon-filedglove-box. increasefrom 15Wh/kgto185Wh/kg.Evenmoresur Inthepresentlyinventedprocess,incertain examples,the 5 prisingly,thevolumetric energy density is increased from anodecurentcolector(conductiveporousstructureforthe 232Wh/Lto314Wh/L. anode),theseparator,andthecathodecurentcolector Thesesignificantdiferencescanotbesimplyascribedto (conductiveporousstructureforthecathodeside)are theincreasesintheelectrodethicknesandthemassloading. assembledinaprotectivehousingbeforeoraftertheinject- Thediferencesarelikelyduetothesignificantlyhigher ing(orimpregnation ofthefirstsuspensionand/orthe60activematerialmassloading(relativetoothermaterials) injecting(orimpregnation)ofthesecondsuspension.In asociatedwiththepresentlyinventedcels,reducedpro someexamples,weassembledanemptyfoamedanode portionofoverhead(non-active)componentsrelativetothe currentcolector,aporousseparatorlayer,andanempty activematerialweight/volume,noneedtohaveabinder foamedcurrentcolectortogethertoformanassemblythat resin,surprisinglybeterutilizationoftheelectrodeactive washousedinapouch(madeofAl-nylonbi-layerfilm).The 65material(most,ifnotal,ofthehard carbon particlesand firstsuspensionwastheninjectedintotheanodecurrent C/Sparticlescontributingtothesodiumionstoragecapac colectorandthesecondsuspensionwasinjectedintothe ity;nodrypocketsorinefectivespotsintheelectrode, methodandtheconventionalmethod.

PDF Image | FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

flexible-and-shape-conformal-rope-shape-alkali-metal-sulfur--036

PDF Search Title:

FLEXIBLE AND SHAPE-CONFORMAL ROPE-SHAPE ALKALI METAL-SULFUR BATTERIES

Original File Name Searched:

US9905856.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP