logo

Graphene-supported highly crosslinked organosulfur nanoparticles as cathode materials

PDF Publication Title:

Graphene-supported highly crosslinked organosulfur nanoparticles as cathode materials ( graphene-supported-highly-crosslinked-organosulfur-nanoparti )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

Chem. Int. Ed. 55 (12) (2016) 3992e3996. [7] H. Cheng, S. Wang, Recent progress in polymer/sulphur composites as cath- odes for rechargeable lithium-sulphur batteries, J. Mater Chem. A 2 (34) (2014) 13783e13794. [8] L. Borchardt, M. Oschatz, S. Kaskel, Carbon materials for lithium sulfur batteries-ten critical questions, Chem. Eur J. 22 (22) (2016) 7324e7351. [9] X. Ji, L.-F. Nazar, Advances in Li-S batteries, J. Mater Chem. 20 (2010) 9821e9826. [10] G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, A polyaniline-coated sulfur/carbon com- posite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries, Adv. Energy Mater. 2 (2012) 1238e1245. [11] A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, F.F. Chesneau, Review on Li-sulfur battery systems: an integral perspective, Adv. Energy Mater. 5 (16) (2015), 1500212, http://dx.doi.org/10.1002/aenm.201500212. [12] Z. Li, Y. Huang, L. Yuan, Z. Hao, Y. Huang, Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries, Carbon 92 (92) (2015) 41e63. [13] G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high- performance lithium-sulfur batteries, Nat. Commun. 7 (2016) 10601e10608. [14] M. Yan, Y. Zhang, Y. Li, Y. Huo, Y. Yu, C. Wang, et al., Manganese dioxide nanosheet functionalized sulfur@PEDOT core-shell nanospheres for advanced lithium-sulfur batteries, J. Mater Chem. A 4 (2016) 9403e9412. [15] B. Li, S. Li, J. Xu, S. Yang, A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances, Energy Environ. Sci. 9 (6) (2016) 2025e2030. [16] Y. Li, J. Fan, M. Zheng, Q. Dong, A novel synergistic composite, Energy Environ. Sci. 9 (9) (2016) 1998e2004. [17] S. Rehman, S. Guo, Y. Hou, Rational design of Si/SiO2 @hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery, Adv. Mater. 28 (28) (2016) 3167e3172. [18] J. Zhang, H. Hu, Z. Li, X.-W. Lou, Double-shelled nanocages with cobalt hy- droxide inner shell and layered double hydroxides outer shell as high- efficiency polysulfide mediator for lithium-sulfur batteries, Angew. Chem. Int. Ed. 55 (12) (2016) 3982e3986. [19] H.-J. Peng, D.-W. Wang, J.-Q. Huang, X.-B. Cheng, Z. Yuan, F. Wei, et al., Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries, Adv. Sci. 3 (1) (2016), 1500268, http://dx.doi.org/10.1002/advs.201500268. [20] C.-H. Chang, S.-H. Chung, A. Manthiram, Effective stabilization of a high- loading sulfur cathode and a lithium-metal anode in Li-S batteries utilizing SWCNT-modulated separators, Small 12 (2) (2016) 174e179. [21] Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochem- istry, materials, and prospects, Angew. Chem. Int. Ed. 52 (50) (2013) 13186e131200. [22] Z.-W. Seh, W. Li, J.-J. Cha, G. Zheng, Y. Yang, M.-T. McDowell, et al., Sulphur- TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun. 4 (2013) 1331, http://dx.doi.org/ 10.1038/ncomms2327. [23] N. Ding, Y. Lum, S. Chen, S.-W. Chien, T.-S.-A. Hor, Z. Liu, et al., Sulfur-carbon yolk-shell particle based 3D interconnected nanostructures as cathodes for rechargeable lithium-sulfur batteries, J. Mater Chem. A 3 (5) (2015) 1853e1857. [24] L. Qie, A. Manthiram, A facile layer-by-layer approach for high-areal-capacity sulfur cathodes, Adv. Mater. 27 (10) (2015) 1694e1700. [25] G. Zhou, Y. Zhao, A. Manthiram, Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries, Adv. Energy Mater. 5 (9) (2015), http://dx.doi.org/10.1002/aenm.201402263. [26] J. Kim, D.-J. Lee, H.-G. Jung, Y.-K. Sun, J. Hassoun, B. Scrosati, An advanced lithium-sulfur battery, Adv. Funct. Mater. 23 (8) (2013) 1076e1080. [27] M. Li, Y. Zhang, X. Wang, W. Ahn, G. Jiang, K. Feng, et al., Gas pickering emulsion templated hollow carbon for high rate performance lithium sulfur batteries, Adv. Funct. Mater. 26 (2016) 8408e8417. [28] X.-B. Cheng, J.-Q. Huang, Q. Zhang, H.-J. Peng, M.-Q. Zhao, F. Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries, Nano Energy 4 (2014) 65e72. [29] X. Yang, Y. Yu, N. Yan, H. Zhang, X. Li, H. Zhang, 1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high perfor- mance lithium-sulfur batteries, J. Mater Chem. A 4 (2016) 5965e5972. [30] J. Song, M.-L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, et al., Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes, Angew. Chem. Int. Ed. 54 (14) (2015) 4325e4329. [31] Z. Li, X. Li, Y. Liao, X. Li, W. Li, Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium-sulfur battery with improved cyclic stability, J. Power Sourc. 334 (2016) 23e30. [32] J. Ou, L. Yang, Z. Zhang, X. Xi, Honeysuckle-derived hierarchical porous ni- trogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery an- odes, J. Power Sourc. 333 (2016) 193e202. [33] F. Wu, J. Qian, R. Chen, T. Zhao, R. Xu, Y. Ye, et al., Sulfur cathode based on layered carbon matrix for high-performance Li-S batteries, Nano Energy 12 (2015) 742e749. [34] S. Lu, Y. Cheng, X. Wu, J. Liu, Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur- coated carbon nanofibers, Nano Lett. 13 (6) (2013) 2485e2489. [35] R. Singhal, S.-H. Chung, A. Manthiram, V. Kalra, A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries, J. Mater Chem. A 3 (2015) 4530e4538. [36] X. Ji, S. Evers, R. Black, L.-F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat. Commun. 2 (2011) 325, http://dx.doi.org/ 10.1038/ncomms1293. [37] A. Chang, Q. Wu, X. Du, S. Chen, J. Shen, Q. Song, et al., Immobilization of sulfur in microgels for lithium-sulfur battery, Chem. Commun. 52 (2016) 4525e4528. [38] X. Jia, C. Zhang, J. Liu, W. Lv, D.-W. Wang, Y. Tao, et al., Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li-S bat- teries, Nanoscale 8 (2016) 4447e4451. [39] S. Diez, A. Hoefling, P. Theato, W. Pauer, Mechanical and electrical properties of sulfur-containing polymeric materials prepared via inverse vulcanization, Polymers 9 (2) (2017) 59e66. [40] J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Sulfur composite cathode ma- terials for rechargeable lithium batteries, Adv. Funct. Mater. 13 (6) (2003) 487e492. [41] S.-N. Talapaneni, T.-H. Hwang, S.-H. Je, O. Buyukcakir, J.-W. Choi, A. Coskun, Elemental-sulfur mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries, Angew. Chem. 128 (2016) 3158e3163. [42] B. Li, S. Yang, S. Li, B. Wang, J. Liu, From commercial sponge toward 3D graphene-silicon networks for superior lithium storage, Adv. Energy Mater. 5 (15) (2015), 1500289, http://dx.doi.org/10.1002/aenm.201500289. [43] H. Kim, J. Lee, H. Ahn, O. Kim, M.-J. Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries, Nat. Commun. 6 (2015), http://dx.doi.org/10.1038/ ncomms8278. [44] W.-J. Chung, J.-J. Griebel, E.-T. Kim, H. Yoon, A.-G. Simmonds, H.-J. Ji, et al., The use of elemental sulfur as an alternative feedstock for polymeric materials, Nat. Chem. 5 (6) (2013) 518e524. [45] S. Zeng, L. Li, D. Zhao, J. Liu, W. Niu, N. Wang, et al., Polymer-capped sulfur copolymers as lithium-sulfur battery cathode: enhanced performance by combined contributions of physical and chemical confinements, J. Phys. Chem. C 121 (121) (2017) 2495e2503. [46] B. Oschmann, J. Park, C. Kim, K. Char, Y.-E. Sung, R. Zentel, Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium-sulfur batteries, Chem. Mater. 27 (20) (2015) 7011e7017. [47] Z. Zhang, H.-K. Jing, S. Liu, G.-R. Li, X.-P. Gao, Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium-sulfur batteries, J. Mater Chem. A 3 (13) (2015) 6827e6834. [48] M. Wang, H. Zhang, W. Zhou, X. Yang, X. Li, H. Zhang, Rational design of a nested pore structure sulfur host for fast Li/S batteries with a long cycle life, J. Mater Chem. A 4 (5) (2016) 1653e1662. [49] S.-A. Abbas, M.-A. Ibrahem, L.-H. Hu, C.-N. Lin, J. Fang, K.-M. Boopathi, et al., Bifunctional separator as a polysulfide mediator for highly stable Li-S batte- ries, J. Mater Chem. A 4 (24) (2016) 9661e9669. [50] S.-H. Je, T.-H. Hwang, S.-N. Talapaneni, O. Buyukcakir, H.-J. Kim, J.-S. Yu, et al., Rational sulfur cathode design for lithium-sulfur batteries: sulfur-embedded benzoxazine polymers, ACS Energy Lett. 1 (3) (2016) 566e572. [51] B.-C. Yu, J.-W. Jung, K. Park, J.-B. Goodenough, A new approach for recycling waste rubber products in Li-S batteries, Energy Environ. Sci. 52 (24) (2016) 4525e4528. [52] I. Gomez, D. Mecerreyes, J.-A. Blazquez, O. Leonet, H. Ben Youcef, C. Li, et al., Inverse vulcanization of sulfur with divinylbenzene: stable and easy pro- cessable cathode material for lithium-sulfur batteries, J. Power Sourc. 329 (2016) 72e78. [53] W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, A high performance sulfur- doped disordered carbon anode for sodium ion batteries, Energy Environ. Sci. 8 (10) (2015) 2916e2921. S. Zeng et al. / Carbon 122 (2017) 106e113 113

PDF Image | Graphene-supported highly crosslinked organosulfur nanoparticles as cathode materials

graphene-supported-highly-crosslinked-organosulfur-nanoparti-008

PDF Search Title:

Graphene-supported highly crosslinked organosulfur nanoparticles as cathode materials

Original File Name Searched:

LiB-Carbon.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP