logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 031

xxxvi Index of Contents of Volumes 1–49 J Judd-Ofelt theory, NIR-emitting complexes 47, ch. 269, p. 1 K kinetics of complexation in aqueous solutions 15, ch. 102, p. 347 – studies of ions 18, ch. 120, p. 159 – spectra of ions in solution 3, ch. 24, p. 171 – thermometry 45, ch. 265, p. 179; 49, ch. 281, p. 339 luminescent solar concentrators, lanthanides in 44, ch. 261, p. 169 M mSR studies of magnetic materials 32, ch. 206, p. 55 magnetic circular dichroism 40, ch. 244, p. 1 magnetic and transport properties of metals 1, ch. 6, p. 411 magnetic correlations in heavy-fermion systems 19, ch. 131, p. 123 magnetic properties (also see physical properties) – at high pressure 42, ch. 252, p. 1 – of borides 38, ch. 238, p. 105 – of europium chalcogenide nanoparticles 47, ch. 270, p. 101 – of intermetallic compounds 2, ch. 14. p. 55; 20, ch. 138, p. 293 – of nickel borocarbides 38, ch. 239, p. 175 – of nonmetallic compounds 22, ch. 150, p. 295 – photo-induced, in europium chalcogenides 47, ch. 270, p. 101 – of R5T4 pseudobinary intermetallic compounds 44, ch. 262, p. 283 – of ternary RT2X2 type intermetallic compounds 12, ch. 83, p. 133 – of ThMn12-type compounds 22, ch. 149, p. 143 magnetic structures 1, ch. 7, p. 489 magnetism 34, ch. 219, p. 135 – exotic phenomena 11, ch. 76, p. 293 – surface 24, ch. 159, p. 1 magnetocaloric effect, in R5T4 compounds 44, ch. 262, p. 283 magneto-optical properties, of europium chalcogenides 47, ch. 270, p. 101 magnetoresistance – in cuprates 31, ch. 197, p. 251 – negative 42, ch. 252, p. 145 – pressure dependent 42, ch. 252, p. 128 magnetostriction – in R5T4 intermetallic compounds 44, ch. 262, p. 283 – RFe2 2, ch. 15, p. 231 – transition metal thin films 32, ch. 205, p. 1 marine chemistry 23, ch. 158, p. 497 1, ch. 11, p. 797; 49, ch. 280, lanthanide chelates (also see complexes) – for sensitizing NIR luminescence 37, ch. 234, p. 171; 47, ch. 270, p. 101 – in biomedical analyses 37, ch. 235, p. 217 lanthanidomesogens 43, ch. 254, p. 1 laser-ablation mass spectrometry 45, ch. 263, Kondo effect p. 293 L lanthanide-induced shifts 23, ch. 153, p. 1; 33, ch. 215, p. 353 p. 1 laser cooling cycle laser spectroscopy lasers 4, ch. 35, p. 275 leaching – of rare-earth-rich muds light-emitting diodes, NIR – phosphors 49, ch. 278, p. 1 light scattering in intermetallic compounds 14, ch. 95, p. 163 linkers, in hybrid materials 47, ch. 271, ch. 235, p. 217 – NIR-triggered upconversion 47, ch. 273, 4, ch. 38, p. 483; 45, ch. 265, p. 179 12, ch. 87, p. 433 p. 147; 48, ch. 276, p. 163 liquid crystalline complexes 43, ch. 254, p. 1 liquid salts 44, ch. 260, p. 87 liquid metals and alloys 12, ch. 85, p. 357 LIS, see lanthanide-induced shifts lithology – of rare-earth-rich muds luminescence – antenna effect 23, ch. 154, p. 69 – in biomedical analyses 37, ch. 234, p. 171; 40, ch. 247, p. 301 – of europium chalcogenides 47, ch. 270, p. 101 – NIR-emitting complexes 47, ch. 269, p. 1 – in NIR molecular probes and devices 37, p. 273 – persistent 48, ch. 274, p. 1 – polyoxometalates 39, ch. 243, p. 297 – sensitization of NIR luminescence 47, ch. 269, p. 1 46, ch. 268, p. 79 47, ch. 269, p. 1 46, ch. 268, p. 79

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-031

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP