logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 142

106 Handbook on the Physics and Chemistry of Rare Earths Barry, T.L., 1968. Fluorescence of Eu2+-activated phases in binary alkaline earth orthosilicate sys- tems. J. Electrochem. Soc. 115, 1181–1184. Bayramov, A., Najafov, H., Kato, A., Yamazaki, M., Fujiki, K., Nazri, M., Iida, S., 2003. Feasi- bility of TFEL application of Ce-doped CaGa2S4 and SrGa2S4 films prepared by flash evap- oration method. J. Phys. Chem. Solids 64, 1821–1824. Black, A.P., Denault, K.A., Oro ́-Sole, J., Gon ̃i, A.R., Fuertes, A., 2015. Red luminescence and fer- romagnetism in europium oxynitridosilicates with a b-K2SO4 structure. Chem. Commun. 51, 2166–2169. Blasse, G., Grabmaier, B.C., 1994. Energy Transfer. Luminescent Materials. Springer-Verlag, Berlin, pp. 97–107. Blasse, G., Wanmaker, W.L., Vrugt, J.W., 1968a. Some new classes of efficient Eu2+-activated phosphors. J. Electrochem. Soc. 115, 673. Blasse, G., Wanmaker, W.L., Vrugt, J.W., Bril, A., 1968b. Fluorescence of Eu2+ activated sili- cates. Philips Res. Rep. 23, 189. Brenchley, M.E., Weller, M.T., 1992. Synthesis and structure of sulfide aluminate sodalities. J. Mater. Chem. 2, 1003–1005. Brill, M.H., 1998. How the CIE 1931 color-matching functions were derived from Wright–Guild data. Color Res. Appl. 23, 259. Cai, L.Y., Wei, X.D., Li, H., Liu, Q.L., 2009. Synthesis, structure and luminescence of LaSi3N5: Ce3+ phosphor. J. Lumin. 129, 165–168. Catti, M., Gazzoni, G., Ivaldi, G., 1983. Structures of twinned b-Sr2SiO4 and of a’-Sr1.9Ba0.1SiO4. Acta Cryst. C 39, 29–34. Chartier, C., Barthou, C., Benalloul, P., Frigerio, J.M., 2005. Photoluminescence of Eu2+ in SrGa2S4. J. Lumin. 111, 147–158. Chen, L., Lin, C.C., Yeh, C.W., Liu, R.S., 2010a. Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials 3, 2172–2195. Chen, Y., Wang, J., Zhang, X., Zhang, G., Gong, M., Su, Q., 2010b. An intense green emitting LiSrPO4:Eu2+,Tb3+ for phosphor-converted LED. Sens. Actuators B Chem. 148, 259–263. Chen, L., Luo, A., Jiang, Y., Liu, F., Deng, X., Xue, S., Chen, X., Zhang, Y., 2013. Suppressing the phase transformation and enhancing the orange luminescence of (Sr, Ba)3SiO5:Eu2+ for application in white LEDs. Mater. Lett. 106, 428–431. Chen, R., Hu, Y., Wu, H., Jin, Y., Mou, Z., Zhang, S., 2015a. Luminescent properties of blue green Sr3Al2O5Cl2:Pr3+ and orange red Sr3Al2O5Cl2:Eu2+, Pr3+ afterglow phosphor. Radiat. Meas. 80, 38–45. Chen, Z., Zhang, J.H., Chen, S., Lin, M.Y., He, C.Q., Xu, G.D., Wang, M.M., Yu, X.F., Zou, J.Q., Guo, K., 2015b. Preparation and luminescence property of Eu2+, Mn2+ co-doped silicates phosphors for white LED. J. Alloys Compd. 632, 756–759. Chen, P., Mo, F., Xia, S., Wang, G., Guan, A., Zhou, L., 2015c. Luminescence and energy transfer of color-tunable Li6Gd(BO3)3:Ce3+,Tb3+ phosphor. Spectrochim. Acta A 149, 682–686. Chenavas, J., Joubert, J.C., Merezio, M., 1978. On the crystal symmetry of the garnet structure. J. Less-Common Metals 62, 373–380. Ching, W.Y., Quyang, L.Z., Yao, H.Z., Xu, Y.N., 2004. Electronic structure and bonding in the Y–Si–O–N quaternary crystals. Phys. Rev. B 70, 085105. Chiu, Y.C., Huang, C.H., Lee, T.J., Liu, W.R., Yeh, Y.T., Jang, S.M., Liu, R.S., 2011. Eu2+ -activated silicon-oxynitride Ca3Si2O4N2: a green-emitting phosphor for white LEDs. Opt. Express 19, A331–A339. Choi, S.W., Hong, S.H., 2009. Characterization of Ca2SiO4:Eu2+ phosphors synthesized by poly- meric precursor process. J. Am. Ceram. Soc. 92, 2025–2028.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-142

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP