HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 144

108 Handbook on the Physics and Chemistry of Rare Earths Dong, K., Li, Z., Xiao, S., Xiang, Z., Zhang, X., Yang, X., Jin, X., 2012. Yellowish-orange luminescence in Sr8Al12O24S2:Eu2+ phosphor. J. Alloys Compd. 543, 105–108. Dong, J., Wang, L., Cui, C., Tian, Y., Huang, P., 2015. Luminescence properties of Ce3+-doped and Ce3+–Tb3+ co-doped Na0.34Ca0.66Al1.66Si2.34O8 phosphor for UV-LED. Ceram. Int. 41, 1341–1346. Dorenbos, P., 2003. Energy of the first 4f7!4f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104, 239–260. Dorenbos, P., 2006. Lanthanides level locations and its impact on phosphor performance. In: Yen, W.M., Shionoya, S., Yamamoto, H. (Eds.), Fundamentals of luminescence, Phosphor Handbook, second ed., vol. 2(11). CRC Press, New York, pp. 139–154. Drofenik, M., Golic, L., 1979. Refinement of the Sr2EuFeO5 and Sr2EuAlO5 structures. Acta Cryst. B 35, 1059. Duan, C.J., Wang, X.J., Otten, W.M., Delsing, A.C.A., Zhao, J.T., Hintzen, H.T., 2008. Prepara- tion, electronic structure, and photoluminescence properties of Eu2+- and Ce3+/Li+-activated alkaline earth silicon nitride MSiN2 (M1⁄4Sr, Ba). Chem. Mater. 20, 1597. Dutczak, D., Ronda, C., Meijerink, A., J€ustel, T., 2013. Red luminescence and persistent lumines- cence of Sr3Al2O5Cl2:Eu2+, Dy3+. J. Lumin. 141, 150. Ehrich, P., 1963. Alkaline earth metals. In: Brauer, G. (Ed.), Handbook of Preparative Inorganic Chemistry, second ed. Academic Press, New York, pp. 887–949 (Section 17). Eisenmann, B., Jakowski, M., Klee, W., Schaefer, H., 1983. Luminescence and structural proper- ties of BaGa2S4 and BaAl2S4. Rev. Chim. Miner. 20, 255. Eysel, W., Hahn, T., 1970. Crystal chemistry and structure of Na2SO4(I) and its solid solutions. Z. Krist-New Cryst. St. 131, 322. Fairman, H.S., Brill, M.H., Hemmendinger, H., 1977. How the CIE 1931 color-matching functions were derived from Wright–Guild data. Color. Res. Appl. 22, 11–23. Fan, L., Zhao, X., Zhang, S., Ding, Y., Li, Z., Zou, Z., 2013. Enhanced luminescence inten- sity of Sr3B2O6:Eu2+ phosphor prepared by sol–gel method. J. Alloys Compd. 579, 432–437. Fang, C.M., Li, Y.Q., Hintzen, H.T., de With, G., 2003. Crystal and electronic structure of the novel nitrides MYSi4N7 (M1⁄4Sr, Ba) with peculiar NSi4 coordination. J. Mater. Chem. 12, 1480–1483. Feldmann, C., J€ustel, T., Ronda, C.R., Schmidt, P.J., 2003. Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 13, 511–516. Fields, J.M., Dear, P.S., Brown, J.J., 1972. Phase equilibria in the system BaO–SrO–SiO2. J. Am. Ceram. Soc. 55, 585–588. Fitzmaurice, J.C., Hector, A., Rowley, A.T., Parkin, I.P., 1994. Rapid, low energy synthesis of lanthanide nitrides. Polyhedron 13, 235–240. Fujita, S., Sakamoto, A., Tanabe, S., 2008. Luminescence characteristics of YAG glass–ceramic phosphor for white LED. IEEE J. Sel. Top. Quantum Electron. 14, 1387–1391. Fujita, N., Iwao, M., Fujita, S., Ohji, M., 2013. Wavelength conversion material “phosphor-glass composites” for high power solid-state lighting. In: Proc. Int. Display Workshops 2013, pp. 775–778. Fukuda, Y., Ishida, K., Mitsuishi, I., Nunoue, S., 2009. Luminescence properties of Eu2+-doped green-emitting Sr-sialon phosphor and its application to white light-emitting diodes. Appl. Phys. Express 2, 012401. Gan, L., Mao, Z.Y., Wang, Y.F., Xu, F.F., Zhu, Y.C., Huang, Q., Liu, X.J., 2013. Photolumines- cence properties of Ca–a-SiAlON:Ce3+ phosphors as function of composition and microstruc- ture. Ceram. Int. 39, 8319.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)