logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 148

112 Handbook on the Physics and Chemistry of Rare Earths Jiao, M., Jia, Y., L€u, W., Lv, W., Zhao, Q., Shao, B., You, H., 2014. Sr3GdNa(PO4)3F:Eu2+,Mn2+: a potential color tunable phosphor for white LEDs. J. Mater. Chem. C 2, 90–97. Joos, J.J., Meert, K.W., Parmentier, A.B., Poelman, D., Smet, P.F., 2012. Thermal quenching and luminescence lifetime of saturated green Sr1xEuxGa2S4 phosphors. Opt. Mater. 34, 1902–1907. Jung, S.H., Kang, D.S., Jeon, D.Y., 2011. Effect of substitution of nitrogen ions to red-emitting Sr3B2O63/2xNx:Eu2+ oxy-nitride phosphor for the application to white LED. J. Cryst. Growth 326, 116–119. Kakihana, M., 1996. Invited review “sol–gel” preparation of high temperature superconducting oxides. J. Sol–Gel Sci. Technol. 6, 7–55. Kakihana, M., Yoshimura, M., 1999. Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull. Chem. Soc. Jpn. 72, 1427–1443. Kalaji, A., Saines, P.J., George, N.C., Cheetham, A.K., 2013. Photoluminescence of cerium-doped (Ca1xSrx)3RE2Ge3O12 garnet phosphors for solid state lighting: relating structure to emis- sion. Chem. Phys. Lett. 586, 91–96. Kalaji, A., Mikami, M., Cheetham, A.K., 2014. Ce3+-activated g-Ca2SiO4 and other olivine-type ABXO4 phosphors for solid-state lighting. Chem. Mater. 26, 3966–3975. Kamiya, S., Mizuno, H., 2006. Phosphors for Lamps. In: Yen, W.M., Shionoya, S. (Eds.), Phosphor Handbook, second ed. CRC Press, New York, pp. 451–494 (Chapter 5, Section 6). Kang, Y.C., Lenggoro, I.W., Park, S.B., Okuyama, K., 2001. One-step synthesis of the green phosphor Ce-Tb-Mg-Al-O system with spherical particle shape and fine size. Appl. Phys. A 72, 103–105. Kang, H.S., Kang, Y.C., Jung, K.Y., Park, S.B., 2005. Eu-doped barium strontium silicate phos- phor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis. Mater. Sci. Eng. B 121, 81–85. Kang, E.H., Choi, S.W., Chung, S.E., Jang, J., Kwon, S., Hong, S.H., 2011. Photoluminescence characteristics of Sr3SiO5:Eu2+ yellow phosphors synthesized by solid-state method and pechini process. J. Electrochem. Soc. 158, J330–J333. Kanke, Y., Navrotsky, A., 1998. A calorimetric study of the lanthanide aluminum oxides and the lanthanide gallium oxides: stability of the perovskites and the garnets. J. Solid State Chem. 141, 424–436. Katharine, L., Derek, P.H., 2001. The crystal structure of Y3Si5N9O and revision of the composi- tions of some high nitrogen-containing M–Si–O–N (M1⁄4Y, La) phases. J. Mater. Chem. 11, 507–512. Kato, K., Okamoto, F., 1983. Preparation and cathodoluminescence of CaS:Eu and Ca1xSrxS:Eu phosphors. Jpn. J. Appl. Phys. 22, 76–78. Kawano, Y., Kim, S.W., Ishigaki, T., Uematsu, K., Toda, K., Takaba, H., Sato, M., 2014. Site engineering concept of Ce3+-activated novel orange-red emission oxide phosphors. Opt. Mater. Express 4, 1770–1774. Kechele, J.A., Hecht, C., Oeckler, O., auf der G€unne, J.S., Schmidt, P.J., Schnick, W., 2009a. Ba2AlSi5N9—a new host lattice for Eu2+-doped luminescent materials comprising a nitridoalu- mosilicate framework with corner- and edge-sharing tetrahedra. Chem. Mater. 21, 1288–1295. Kechele, J.A., Oeckler, O., Stadler, F., Schnick, W., 2009b. Structure elucidation of BaSi2O2N2— a host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LEDs. Solid State Sci. 11, 537–543. Keeping, S., 2014. The rise of chip-on-board LED modules j DigiKey. Available at: http://www. digikey.com/en/articles/techzone/2014/mar/the-rise-of-chip-on-board-led-modules (accessed March 31, 2015).

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-148

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP