HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 161

Rare Earth-Doped Phosphors for White LEDs Chapter 278 125 Xie, R.J., Hirosaki, N., Suehiro, T., Xu, F.F., Mitomo, M., 2006c. A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater. 18, 5578–5583. Xie, R.J., Hirosaki, N., Kimura, N., Sakuma, K., Mitomo, M., 2007. 2-Phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Appl. Phys. Lett. 90, 1101–1103. Xie, R.-J., Hirosaki, N., Li, Y., Takeda, T., 2010. Rare-earth activated nitride phosphors: synthe- sis, luminescence and applications. Materials 3, 3777–3793 (191101). Xie, R.J., Li, Y.Q., Hirosaki, N., Yamamoto, H., 2011. Nitride Phosphors and Solid-State Lighting. CRC Press, New York, pp. 77–83. Xu, Y.N., Rulis, P., Ching, W.Y., 2005. Electronic structure and bonding in quaternary crystal Y3Si5N9O. Phys. Rev. B 72, 113101. Xu, X., Cai, C., Hao, L., Wang, Y., Li, Q., 2009. The photoluminescence of Ce-doped Lu4Si2O7N2 green phosphors. Mater. Chem. Phys. 118, 270–272. Xu, J., Chen, W., Zeng, R., Peng, D., 2014. A carbon-free sol–gel method for preparation of Lu3Al5O12:Ce3+ phosphors for potential applications in laser scintillators and LEDs. Mater. Lett. 133, 1–4. Xu, S., Tang, K., Zhu, D., Han, T., 2015. Luminescence properties and energy transfer of Ba2Mg (PO4)2:Eu2+, Mn2+ phosphor synthesized by co-precipitation method. Opt. Mater. 42, 106–110. Yadav, P.J., Joshi, C.P., Moharil, S.V., 2013. Two phosphor converted white LED with improved CRI. J. Lumin. 136, 1–4. Yamada, N., Shionoya, S., Kushida, T., 1972. Phonon-assisted energy transfer between trivalent rare earth ions. J. Phys. Soc. Jpn. 32, 1577–1586. Yamaguchi, T., Suzuki, Y., Kakihana, M., 2010. Low temperature synthesis of (Ca, Ce)3Sc2- Si3O12 phosphor by hydrothermal gelation method using novel water soluble silicon compound. J. Jpn. Soc. Powder Powder Metall. 57, 706–710. Yamamoto, H., 2006. Fundamentals of luminescence. In: Yen, W.M., Shionoya, S., Yamamoto, H. (Eds.), Luminescence of a localized centers, Phosphor Handbook, second ed. vol. 2(3), CRC Press, New York (Chapter 2, Section 3). Yamane, H., Naqura, T., Miyazaki, T., 2014. La3Si6N11. Acta Crystal. E 70, i23–i24. Yamnova, N.A., Zubkova, N.V., Eremin, N.N., Zadov, A.E., Gazeev, V.M., 2011. Crystal structure of larnite b-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Cryst. Rep. 56, 210–220. Yan, X., Zheng, S., Yu, R., Cai, J., Xu, Z., Liu, C., Luo, X., 2008. Preparation of YAG:Ce3+ phos- phor by sol-gel low temperature combustion method and its luminescent properties. Trans. Nonferrous Met. Soc. China 18, 648–653. Yang, Z., Li, X., Yang, Y., Li, X., 2007. The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion. J. Lumin. 122–123, 707–709. Yang, H., Liu, Y., Ye, S., Qiu, J., 2008. Purple-to-yellow tunable luminescence of Ce3+ doped yttrium–silicon–oxide–nitride phosphors. Chem. Phys. Lett. 451, 218–221. Yang, J., Wang, T., Chen, D., Chen, G., Liu, Q., 2012. An investigation of Eu2+-doped CaAlSiN3 fabricated by an alloy-nitridation method. Mater. Sci. Eng. B 177, 1596–1604. Yang, H.K., Noh, H.M., Moon, B.K., Jeong, J.H., Yi, S.S., 2014a. Luminescence investigations of Sr3SiO5:Eu2+ orange–yellow phosphor for UV-based white LED. Ceram. Int. 40, 12503–12508. Yang, L., Zhang, N., Zhang, R., Wen, B., Li, H., Bian, X., 2014b. A CaS:Eu based red-emitting phosphor with significantly improved thermal quenching resistance for LED lighting applica- tions. Mater. Lett. 129, 134–136.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)