logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 162

126 Handbook on the Physics and Chemistry of Rare Earths Yang, J., Feng, J., Zhao, M., Ren, X., Pan, W., 2015. Electronic structure, mechanical properties and anisotropy of thermal conductivity of Y–Si–O–N quaternary crystals. Comput. Mater. Sci. 109, 231–239. Yao, S.S., Li, Y.Y., Xue, L.H., Yan, Y.W., You, Y., 2010. Luminescence studies on Ba2ZnSi2O7: Eu2+ phosphors. Luminescence 25, 399–402. Yasushita, C., Kato, H., Kakihana, M., 2012. Synthesis of an oxynitride-based green phosphor Ba3Si6O12N2:Eu2+ via an aqueous-solution process, using propylene-glycol-modified silane. J. Inf. Disp. 13, 107–111. Yoo, S.H., Kim, C.K., 2009. Nanocomposite encapsulation of CuS:Eu light-emitting diode phos- phors for the enhancement of the stability against moisture. J. Electrochem. Soc. 156, J170–J173. Yu, R., Wang, J., Zhang, M., Zhang, J., Yuan, H., Su, Q., 2008. A new blue-emitting phosphor of Ce3+-activated CaLaGa3S6O for white-light-emitting diodes. Chem. Phys. Lett. 453, 197–201. Yu, R., Jin, S., Cen, S., Liang, P., 2010. Effect of the phosphor geometry on the luminous flux of phosphor-converted light-emitting diodes. IEEE Photon. Technol. Lett. 22, 1765–1767. Yu, H.J., Chung, W., Park, S.H., Kim, J., Kim, S.H., 2011. Luminous properties of SrGa2S3Se phosphors doped with Eu2+ for LEDs application. Mater. Lett. 65, 474–476. Yu, R., Li, H., Ma, H., Wang, C., Wang, H., Moon, B.K., Jeong, J.H., 2012. Photoluminescence properties of a new Eu2+-activated CaLaGa3S7 yellowish-green phosphor for white LED applications. J. Lumin. 132, 2783–2787. Yu, J., Gong, W., Zhang, Y., Ning, G., 2014. White-light-emitting diode using a single-phase full- color (Ba, Sr)10(PO4)4(SiO4)2:Eu2+ phosphor. J. Lumin. 147, 250–252. Yuan, S.L., Chen, X.L., Zhu, C.F., Yang, Y.X., Chen, G.R., 2007. Eu2+, Mn2+ co-doped (Sr, Ba)6BP5O20—a novel phosphor for white-LED. Opt. Mater. 30, 192–194. Yuan, B., Wang, X., Tsuboi, T., Huang, Y., Seo, H.J., 2012. A new yellowish-green-emitting phosphor:Eu2+-doped K4CaSi3O9. J. Alloys Compd. 512, 144–148. Yum, J., Seo, S.-Y., Lee, S., Sung, Y.-E., 2003. Y3Al5O12:Ce0.05 phosphor coatings on gallium nitride for white light emitting diodes. J. Electrochem. Soc. 150, H47–H52. Yun, B.-G., Miyamoto, Y., Yamamoto, H., 2007. Luminescence properties of (Sr1uBau)Si2O2N2: Eu2+, yellow or orange phosphors for white LEDs, synthesized with (Sr1uBau)2SiO4:Eu2+ as a precursor. J. Electrochem. Soc. 154, J320–J325. Zeng, C., Liu, H., Hu, Y., Liao, L., Mei, L., 2015. Color-tunable properties and energy transfer in Ba3GdNa(PO4)3F:Eu2+,Tb3+ phosphor pumped for n-UV w-LEDs. Opt. Laser Technol. 74, 6–10. Zeuner, M., Hintze, F., Schnick, W., 2008. Low temperature precursor route for highly efficient spherically shaped LED-phosphors M2Si5N8:Eu2+ (M 1⁄4 Eu, Sr, Ba). Chem. Mater. 21, 336–342. Zeuner, M., Schmidt, P.J., Schnick, W., 2009. One-pot synthesis of single-source precursors for nanocrystalline led phosphors M2Si5N8:Eu2+ (M1⁄4Sr, Ba). Chem. Mater. 21, 2467–2473. Zeuner, M., Pagano, S., Schnick, W., 2011. Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. Angew. Chem. Int. Ed. 50, 7754–7775. Zhang, S., Huang, Y., 2011. The luminescence characterization and thermal stability of Eu2+ ions- doped NaBaPO4 phosphor. J. Am. Ceram. Soc. 94, 2987–2992. Zhang, X., Liu, X., 1992. Luminescence properties and energy transfer of Eu2+ doped Ca8Mg (SiO4)4Cl2 phosphors. J. Electrochem. Soc. 139, 622–625. Zhang, H., Horikawa, T., Hanzawa, H., Hamaguchi, A., Machida, K., 2007a. Photoluminescence properties of a-SiAlON:Eu2+ prepared by carbothermal reduction and nitridation method. J. Electrochem. Soc. 154, J59–J61.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-162

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP