logo

Lithium-Sulfur Batteries: Advances and Trends

PDF Publication Title:

Lithium-Sulfur Batteries: Advances and Trends ( lithium-sulfur-batteries-advances-and-trends )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 030

Electrochem 2020, 1 255 44. Guo, R.; Zhang, S.; Wang, J.; Ying, H.; Han, W.-Q. One-Pot Synthesis of a Copolymer Micelle Crosslinked Binder with Multiple Lithium-Ion Diffusion Pathways for Lithium–Sulfur Batteries. ChemSusChem 2020, 13, 819–826. [CrossRef] [PubMed] 45. Cui, J.; Li, Z.; Li, J.; Li, S.; Liu, J.; Shao, M.; Wei, M. An atomic-confined-space separator for high performance lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 1896–1903. [CrossRef] 46. Li, Y.; Wang, C.; Wang, W.; Eng, A.Y.S.; Wan, M.; Fu, L.; Mao, E.; Li, G.; Tang, J.; Seh, Z.W.; et al. Enhanced Chemical Immobilization and Catalytic Conversion of Polysulfide Intermediates Using Metallic Mo Nanoclusters for High-Performance Li–S Batteries. ACS Nano 2019, 14, 1148–1157. [CrossRef] [PubMed] 47. Chiochan, P.; Kosasang, S.; Ma, N.; Duangdangchote, S.; Suktha, P.; Sawangphruk, M. Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries. Carbon 2020, 158, 244–255. [CrossRef] 48. Shen, G.; Liu, Z.; Lu, A.; Duan, J.; Younus, H.A.; Deng, H.; Wang, X.; Zhang, S. Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1154–1163. [CrossRef] 49. Lee, J.; Jeon, Y.; Oh, J.; Kim, M.; Lee, L.Y.S.; Piao, Y. γ-Fe2O3 nanoparticles anchored in MWCNT hybrids as efficient sulfur hosts for high-performance lithium-sulfur battery cathode. J. Electroanal. Chem. 2020, 858, 113806. [CrossRef] 50. Yu, B.; Chen, Y.; Wang, Z.; Chen, D.; Wang, X.; Zhang, W.; He, J.; He, W. 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries. J. Power Sources 2020, 447, 227364. [CrossRef] 51. Yanilmaz, M.; Asiri, A.M.; Zhang, X. Centrifugally spun porous carbon microfibers as interlayer for Li–S batteries. J. Mater. Sci. 2019, 55, 3538–3548. [CrossRef] 52. Song, J.; Zheng, J.; Zhang, R.; Fu, S.; Zhu, C.; Feng, S.; McEwen, J.-S.; Du, D.; Li, X.; Lin, Y. Enhancing Chemical Interaction of Polysulfide and Carbon through Synergetic Nitrogen and Phosphorus Doping. ACS Sustain. Chem. Eng. 2019, 8, 806–813. [CrossRef] 53. Yang, J.; Zhao, S.-X.; Zeng, X.; Lu, Y.; Cao, G. Catalytic Interfaces-Enriched Hybrid Hollow Spheres Sulfur Host for Advanced Li–S Batteries. Adv. Mater. Interfaces 2019, 7. [CrossRef] 54. Li, Z.; Xiao, Z.; Li, P.; Meng, X.; Wang, R. Enhanced Chemisorption and Catalytic Effects toward Polysulfides by Modulating Hollow Nanoarchitectures for Long-Life Lithium–Sulfur Batteries. Small 2019, 16, 1906114. [CrossRef] [PubMed] 55. Yu, Z.; Liu, M.; Guo, D.; Wang, J.; Chen, X.; Jin, H.; Yang, Z.; Wang, S.; Li, J.; Chen, X.; et al. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries. Angew. Chem. 2020, 59, 6406–6411. [CrossRef] [PubMed] 56. Shao, A.-H.; Zhang, Z.; Xiong, D.-G.; Yu, J.; Cai, J.-X.; Yang, Z.-Y. Facile Synthesis of a “Two-in-One” Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 5968–5978. [CrossRef] [PubMed] 57. Wang, Z.; Shen, J.; Ji, S.; Xu, X.; Zuo, S.; Liu, Z.; Zhang, D.; Hu, R.; Ouyang, L.; Liu, J.; et al. B,N Codoped Graphitic Nanotubes Loaded with Co Nanoparticles as Superior Sulfur Host for Advanced Li–S Batteries. Small 2020, 16, 1906634. [CrossRef] 58. Wu, Z.; Yuan, L.; Han, Q.; Lan, Y.; Zhou, Y.; Jiang, X.; Ouyang, X.; Zhu, J.; Wang, X.; Fua, Y. Phosphorous/oxygen co-doped mesoporous carbon bowls as sulfur host for high performance lithium-sulfur batteries. J. Power Sources 2020, 450, 227658. [CrossRef] 59. Tian, Y.; Li, G.; Zhang, Y.; Luo, D.; Wang, X.; Zhao, Y.; Liu, H.; Ji, P.; Du, X.; Li, J.; et al. Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward High-Performance Lithium-Sulfur Batteries. Adv. Mater. 2019, 32, e1904876. [CrossRef] 60. Susarla, S.; Puthirath, A.B.; Tsafack, T.; Salpekar, D.; Babu, G.; Ajayan, P.M. Atomic-Level Alloying of Sulfur and Selenium for Advanced Lithium Batteries. ACS Appl. Mater. Interfaces 2019, 12, 1005–1013. [CrossRef] 61. Wang, B.; Guo, W.; Fu, Y. Anodized Aluminum Oxide Separators with Aligned Channels for High-Performance Li–S Batteries. ACS Appl. Mater. Interfaces 2020, 12, 5831–5837. [CrossRef] [PubMed] 62. Wang, J.; Wang, K.; Yang, Z.; Li, X.; Gao, J.; He, J.; Wang, N.; Wang, H.; Zhang, Y.; Huang, C. Effective Stabilization of Long-Cycle Lithium–Sulfur Batteries Utilizing In Situ Prepared Graphdiyne-Modulated Separators. ACS Sustain. Chem. Eng. 2019, 8, 1741–1750. [CrossRef]

PDF Image | Lithium-Sulfur Batteries: Advances and Trends

lithium-sulfur-batteries-advances-and-trends-030

PDF Search Title:

Lithium-Sulfur Batteries: Advances and Trends

Original File Name Searched:

electrochem-01-00016.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP