Lithium-Sulfur Batteries: Advances and Trends

PDF Publication Title:

Lithium-Sulfur Batteries: Advances and Trends ( lithium-sulfur-batteries-advances-and-trends )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 031

Electrochem 2020, 1 256 63. Chung, W.J.; Griebel, J.J.; Kim, E.T.; Yoon, H.; Simmonds, A.G.; Ji, H.J.; Dirlam, P.T.; Glass, R.S.; Wie, J.J.; Nguyen, N.A.; et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518–524. [CrossRef] [PubMed] 64. Zhang, Y.-J.; Liu, X.; Wu, L.; Dong, W.; Xia, F.-J.; Chen, L.-D.; Zhou, N.; Xia, L.; Hu, Z.-Y.; Liu, J.; et al. A flexible, hierarchically porous PANI/MnO2 network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 2741–2751. [CrossRef] 65. Wei, W.; Li, J.; Wang, Q.; Liu, D.; Niu, J.; Liu, P. Hierarchically Porous SnO2 Nanoparticle-Anchored Polypyrrole Nanotubes as a High-Efficient Sulfur/Polysulfide Trap for High-Performance Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 6362–6370. [CrossRef] 66. Chen, C.; Xu, H.; Zhang, B.; Jiang, Q.; Zhang, Y.; Li, L.; Lin, Z. Rational design of a mesoporous silica-based cathode for efficient trapping of polysulfides in Li-S batteries. Chem. Commun. 2020, 56, 786–789. [CrossRef] 67. Liu, X.; Chen, P.; Chen, J.; Zeng, Q.; Wang, Z.; Li, Z.; Zhang, L. A nitrogen-rich hyperbranched polymer as cathode encapsulated material for superior long-cycling lithium-sulfur batteries. Electrochim. Acta 2020, 330, 135337. [CrossRef] 68. Lin, J.; Zhang, K.; Zhu, Z.; Zhang, R.; Li, N.; Zhao, C. CoP/C Nanocubes-Modified Separator Suppressing Polysulfide Dissolution for High-Rate and Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 12, 2497–2504. [CrossRef] 69. Chen, M.; Li, C.; Fu, X.; Wei, W.; Fan, X.; Hattori, A.; Chen, Z.; Liu, J.; Zhong, W.-H. Let It Catch: A Short-Branched Protein for Efficiently Capturing Polysulfides in Lithium–Sulfur Batteries. Adv. Energy Mater. 2020, 10. [CrossRef] 70. Wang, H.; Zhang, W.; Xu, J.; Guo, Z. Advances in Polar Materials for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28. [CrossRef] 71. Wang, Y.; Yu, Y.; Tan, Y.; Li, T.; Chen, Y.; Wang, S.; Sui, K.; Zhang, H.; Luo, Y.; Li, X. Affinity Laminated Chromatography Membrane Built-in Electrodes for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 10, 1903233. [CrossRef] 72. Zuoab, Y.; Zhao, M.; Ren, P.; Suab, W.; Zhou, J.; Chen, Y.; Tang, Y.; Chen, Y. An efficient polysulfide trapper of an nitrogen and nickel-decorating amylum scaffold-coated separator for ultrahigh performance in lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 1238–1246. [CrossRef] 73. Li, G.; Lu, F.; Dou, X.; Wang, X.; Luo, D.; Sun, H.; Yu, A.; Chen, Z. Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. J. Am. Chem. Soc. 2020, 142, 3583–3592. [CrossRef] 74. Li, B.; Xie, M.; Yi, G.; Zhang, C. Biomass-derived activated carbon/sulfur composites as cathode electrodes for Li–S batteries by reducing the oxygen content. RSC Adv. 2020, 10, 2823–2829. [CrossRef] 75. Razzaq, A.A.; Yuan, X.; Chen, Y.; Hu, J.; Mu, Q.; Ma, Y.; Zhao, X.; Miao, L.; Ahn, J.-H.; Peng, Y.; et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 1298–1306. [CrossRef] 76. Xu, W.; Pang, H.; Zhou, H.; Jian, Z.; Hu, R.; Xing, Y.; Zhang, S. Lychee-like TiO2@TiN dual-function composite material for lithium–sulfur batteries. RSC Adv. 2020, 10, 2670–2676. [CrossRef] 77. Chen, P.; Wang, Z.; Zhang, B.; Liu, H.; Liu, W.; Zhao, J.; Ma, Z.; Dong, W.; Su, Z. Reduced graphene oxide/TiO2(B) nanocomposite-modified separator as an efficient inhibitor of polysulfide shuttling in Li–S batteries. RSC Adv. 2020, 10, 4538–4544. [CrossRef] 78. Shen, Z.; Cao, M.; Zhang, Z.; Pu, J.; Zhong, C.; Li, J.; Ma, H.; Li, F.; Zhu, J.; Pan, F.; et al. Efficient Ni 2 Co 4 P 3 Nanowires Catalysts Enhance Ultrahigh-Loading Lithium–Sulfur Conversion in a Microreactor-Like Battery. Adv. Funct. Mater. 2019, 30. [CrossRef] 79. Yang, Y.; Lei, S.; Song, S.; Sun, W.; Wang, L. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manag. 2020, 102, 131–138. [CrossRef] 80. Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Appl. Polym. Sci. 2020, 58, 1347–1364. [CrossRef] 81. Chalker, J.M.; Worthington, M.J.H.; Lundquist, N.A.; Esdaile, L.J. Synthesis and Applications of Polymers Made by Inverse Vulcanization. Top. Curr. Chem. 2019, 377, 16. [CrossRef] [PubMed] 82. Lim, J.; Pyun, J.; Char, K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials. Angew. Chem. Int. Ed. 2015, 54, 3249–3258. [CrossRef] [PubMed]

PDF Image | Lithium-Sulfur Batteries: Advances and Trends

PDF Search Title:

Lithium-Sulfur Batteries: Advances and Trends

Original File Name Searched:

electrochem-01-00016.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)