logo

Lithium-Sulfur Batteries: Advances and Trends

PDF Publication Title:

Lithium-Sulfur Batteries: Advances and Trends ( lithium-sulfur-batteries-advances-and-trends )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 032

Electrochem 2020, 1 257 83. Zhang, Y.; Glass, R.S.; Char, K.; Pyun, J.; Pyun, J. Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs). Polym. Chem. 2019, 10, 4078–4105. [CrossRef] 84. Smith, A.D.; Smith, R.C.; Tennyson, A.G. Carbon-Negative Polymer Cements by Copolymerization of Waste Sulfur, Oleic Acid, and Pozzolan Cements. Sustain. Chem. Pharm. 2020, 16, 100249. [CrossRef] 85. Karunarathna, M.; Smith, R.C. Valorization of Lignin as a Sustainable Component of Structural Materials and Composites: Advances from 2011 to 2019. Sustainability 2020, 12, 734. [CrossRef] 86. Tang, B.; Wu, H.; Du, X.; Cheng, X.; Liu, X.; Yu, Z.; Yang, J.; Zhang, M.; Zhang, J.; Cui, G. Highly Safe Electrolyte Enabled via Controllable Polysulfide Release and Efficient Conversion for Advanced Lithium–Sulfur Batteries. Small 2020, 16, e1905737. [CrossRef] 87. E Camacho-Forero, L.; Balbuena, P.B. Elucidating Interfacial Phenomena between Solid-State Electrolytes and the Sulfur-Cathode of Lithium-Sulfur Batteries. ECS Meet. Abstr. 2019, 32, 360–373. [CrossRef] 88. Xiao, Q.; Deng, C.; Wang, Q.; Zhang, Q.; Yue, Y.; Ren, S. In Situ Cross-Linked Gel Polymer Electrolyte Membranes with Excellent Thermal Stability for Lithium Ion Batteries. ACS Omega 2019, 4, 95–103, Available online: https://pubs.acs.org/doi/full/10.1021/acsomega.8b02255 (accessed on 10 June 2020). [CrossRef] 89. Baik, S.; Park, J.H.; Lee, J.W. One-pot conversion of carbon dioxide to CNT-grafted graphene bifunctional for sulfur cathode and thin interlayer of Li–S battery. Electrochim. Acta 2020, 330, 135264. [CrossRef] 90. Shi, H.; Lv, W.; Zhang, C.; Wang, D.-W.; Ling, G.; He, Y.-B.; Kang, F.; Yang, Q.-H. Functional Carbons Remedy the Shuttling of Polysulfides in Lithium-Sulfur Batteries: Confining, Trapping, Blocking, and Breaking up. Adv. Funct. Mater. 2018, 28. [CrossRef] 91. Kensy, C.; Härtel, P.; Maschita, J.; Dörfler, S.; Schumm, B.; Abendroth, T.; Althues, H.; Lotsch, B.V.; Kaskel, S. Scalable production of nitrogen-doped carbons for multilayer lithium-sulfur battery cells. Carbon 2020, 161, 190–197. [CrossRef] 92. Shih, H.-J.; Chang, J.-Y.; Cho, C.-S.; Li, C.-C. Nano-carbon-fiber-penetrated sulfur crystals as potential cathode active material for high-performance lithium–sulfur batteries. Carbon 2020, 159, 401–411. [CrossRef] 93. Liu, N.; Zhou, G.; Yang, A.; Yu, X.; Shi, F.; Sun, J.; Zhang, J.; Liu, B.; Wu, C.-L.; Tao, X.; et al. Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. Proc. Natl. Acad. Sci. USA 2019, 116, 765–770. [CrossRef] [PubMed] 94. Yang, A.; Zhou, G.; Kong, X.; Vilá, R.A.; Pei, A.; Wu, Y.; Yu, X.; Zheng, X.; Wu, C.-L.; Liu, B.; et al. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat. Nanotechnol. 2020, 15, 231–237. [CrossRef] [PubMed] 95. Zhao, F.; Li, Y.; Feng, W. Recent Advances in Applying Vulcanization/Inverse Vulcanization Methods to Achieve High-Performance Sulfur-Containing Polymer Cathode Materials for Li-S Batteries. Small Methods 2018, 2, 1–34. [CrossRef] 96. Liu, X.; Lu, Y.; Zeng, Q.; Chen, P.; Li, Z.; Wen, X.; Wen, W.; Li, Z.; Zhang, L. Trapping of Polysulfides with Sulfur-Rich Poly Ionic Liquid Cathode Materials for Ultralong-Life Lithium–Sulfur Batteries. ChemSusChem 2020, 13, 715–723. [CrossRef] 97. He, Y.; Matthews, B.; Wang, J.; Song, L.; Wang, X.; Wu, G. Innovation and challenges in materials design for flexible rechargeable batteries: From 1D to 3D. J. Mater. Chem. A 2018, 6, 735–753. [CrossRef] 98. Peng, H.-J.; Huang, J.-Q.; Zhang, Q. A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237–5288. [CrossRef] 99. Mukkabla, R.; Ojha, M.; Deepa, M. Poly(N-methylpyrrole) barrier coating and SiO2 fillers based gel electrolyte for safe and reversible Li–S batteries. Electrochim. Acta 2020, 334, 135571. [CrossRef] 100. Wei,Y.;Li,X.;Xu,Z.;Sun,H.;Zheng,Y.;Peng,L.;Liu,Z.;Gao,C.;Gao,M.Solutionprocessiblehyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries. Polym. Chem. 2015, 6, 973–982. [CrossRef] 101. Hua, Z.; Sua, H.; Tua, S.; Xionga, P.; Chenga, M.; Zhaoa, X.; Wanga, L.; Zhua, Y.; Li, F.; Xu, Y. Efficient polysulfide trapping enabled by a polymer adsorbent in lithium-sulfur batteries. Electrochim. Acta 2020, 336, 135693. [CrossRef] 102. Zhong, Y.; Lin, F.; Wang, M.; Zhang, Y.; Ma, Q.; Lin, J.; Feng, Z.; Wang, H. Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling. Adv. Funct. Mater. 2020, 30, 1907579. [CrossRef] 103. Wei,L.;Li,W.;Zhao,T.;Zhang,N.;Li,L.;Wu,F.;Chen,R.CobaltnanoparticlesshieldedinN-dopedcarbon nanotubes for high areal capacity Li–S batteries. Chem. Commun. 2020, 56, 3007–3010. [CrossRef] [PubMed]

PDF Image | Lithium-Sulfur Batteries: Advances and Trends

lithium-sulfur-batteries-advances-and-trends-032

PDF Search Title:

Lithium-Sulfur Batteries: Advances and Trends

Original File Name Searched:

electrochem-01-00016.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP