logo

Lithium-Sulfur Batteries: Advances and Trends

PDF Publication Title:

Lithium-Sulfur Batteries: Advances and Trends ( lithium-sulfur-batteries-advances-and-trends )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 033

Electrochem 2020, 1 258 104. Yao,S.;Guo,R.;Xie,F.;Wu,Z.;Gao,K.;Zhang,C.;Shen,X.;Li,T.;Qin,S.Electrospunthree-dimensional cobalt decorated nitrogen doped carbon nanofibers network as freestanding electrode for lithium/sulfur batteries. Electrochim. Acta 2020, 337, 135765. [CrossRef] 105. Cai, J.; Song, Y.-Z.; Chen, X.; Sun, Z.; Yi, Y.; Sun, J.; Zhang, Q. MOF-derived conductive carbon nitrides for separator-modified Li–S batteries and flexible supercapacitors. J. Mater. Chem. A 2020, 8, 1757–1766. [CrossRef] 106. Wang, R.; Yang, J.; Chen, X.; Zhao, Y.; Zhao, W.; Qian, G.; Li, S.; Xiao, Y.; Chen, H.; Ye, Y.; et al. Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Li–S Battery. Adv. Energy Mater. 2020, 10. [CrossRef] 107. Li,Y.;Lin,S.;Wang,D.;Gao,T.;Song,J.;Zhou,P.;Xu,Z.;Yang,Z.;Xiao,N.;Guo,S.SingleAtomArray Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium–Sulfur Batteries. Adv. Mater. 2020, 32, e1906722. [CrossRef] 108. Jin,J.;Cai,W.;Cai,J.;Shao,Y.;Song,Y.-Z.;Xia,Z.;Zhang,Q.;Sun,J.MOF-derivedhierarchicalCoPnanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 3027–3034. [CrossRef] 109. Wang,C.;Song,H.;Yu,C.;Ullah,Z.;Guan,Z.;Chu,R.;Zhang,Y.;Zhao,L.;Li,Q.;Liu,L.Ironsingle-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421–3430. [CrossRef] 110. Chen,S.;Ming,Y.;Tan,B.;Chen,S.Carbon-freesulfur-basedcompositecathodeforadvancedLithium-Sulfur batteries: A case study of hierarchical structured CoMn2O4 hollow microspheres as sulfur immobilizer. Electrochim. Acta 2020, 329, 135128. [CrossRef] 111. Liu, H.; Chen, M.; Zeng, P.; Li, X.; Luo, J.; Li, Y.; Xing, T.; Chang, B.; Wang, X.; Luo, Z. Lithium Sulfide-Embedded Three-Dimensional Heterogeneous Micro-/Mesoporous Interwoven Carbon Architecture as the Cathode of Lithium-Sulfur Batteries. ACS Sustain. Chem. Eng. 2020, 8, 351–361. [CrossRef] 112. Liu, X.; Huang, J.-Q.; Zhang, Q.; Mai, L. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Adv. Mater. 2017, 29, 1601759. [CrossRef] [PubMed] 113. Li,Y.;Jiang,T.;Yang,H.;Lei,D.;Deng,X.;Hao,C.;Zhang,F.;Guo,J.AheterostucturedCo3S4/MnSnanotube array as a catalytic sulfur host for lithium-sulfur batteries. Electrochim. Acta 2020, 330, 135311. [CrossRef] 114. Guo,D.;Zhang,Z.;Xi,B.;Yu,Z.;Zhou,Z.;Chen,X.Ni3S2AnchoredintoN/Sco-dopedReducedGraphene Oxide with Highly Pleated Structure as a Sulfur Host for Lithium-Sulfur Batteries. J. Mater. Chem. A Mater. Energy Sustain. 2020, 8, 3834–3844. [CrossRef] 115. Zhou,L.;Zhuang,Z.;Zhao,H.;Lin,M.;Zhao,D.;Mai,L.IntricateHollowStructures:ControlledSynthesis and Applications in Energy Storage and Conversion. Adv. Mater. 2017, 29, 1602914. [CrossRef] 116. Li, W.; Gong, Z.; Yan, X.; Wang, D.; Liu, J.; Guo, X.; Zhang, Z.; Li, G. In situ engineered ZnS–FeS heterostructures in N-doped carbon nanocages accelerating polysulfide redox kinetics for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 433–442. [CrossRef] 117. Wang, X.; Zhao, X.; Ma, C.; Yang, Z.; Chen, G.; Wang, L.; Yue, H.; Zhang, D.; Sun, Z. Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li–S batteries. J. Mater. Chem. A 2020, 8, 1212–1220. [CrossRef] 118. Ma, F.; Wang, X.; Wang, J.; Tian, Y.; Liang, J.; Fan, Y.; Wang, L.; Wang, T.; Cao, R.; Jiao, S.; et al. Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithium–sulfur battery. Electrochim. Acta 2020, 330, 135310. [CrossRef] 119. Xu,Y.-W.;Zhang,B.-H.;Li,G.-R.;Liu,S.;Gao,X.-P.CovalentlyBondedSulfurAnchoredwithThiol-Modified Carbon Nanotube as a Cathode Material for Lithium–Sulfur Batteries. ACS Appl. Energy Mater. 2019, 3, 487–494. [CrossRef] 120. Phadke,S.;Pires,J.;Korchenko,A.;Anouti,M.Howdoorganicpolysulphidesimprovetheperformanceof Li-S batteries? Electrochim. Acta 2020, 330, 135253. [CrossRef] 121. Smith,A.D.;McMillen,C.D.;Smith,R.C.;Tennyson,A.G.CopolymersbyInverseVulcanizationofSulfur with Pure or Technical-Grade Unsaturated Fatty Acids. J. Appl. Polym. Sci. 2020, 58, 438–445. [CrossRef] 122. Karunarathna,M.S.;Tennyson,A.G.;Smith,R.C.Facilenewapproachtohighsulfur-contentmaterialsand preparation of sulfur–lignin copolymers. J. Mater. Chem. A 2020, 8, 548–553. [CrossRef] 123. Karunarathna, M.S.; Lauer, M.K.; Tennyson, A.G.; Smith, R.C. Copolymerization of an aryl halide and elemental sulfur as a route to high sulfur content materials. Polym. Chem. 2020, 11, 1621–1628. [CrossRef]

PDF Image | Lithium-Sulfur Batteries: Advances and Trends

lithium-sulfur-batteries-advances-and-trends-033

PDF Search Title:

Lithium-Sulfur Batteries: Advances and Trends

Original File Name Searched:

electrochem-01-00016.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP