Preparation, Characterization, and Applications of Electrospun Carbon Nanofibers

PDF Publication Title:

Preparation, Characterization, and Applications of Electrospun Carbon Nanofibers ( preparation-characterization-and-applications-electrospun-ca )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

Electrospinning and Electrospraying - Techniques and Applications Figure 11. (a) Cyclic voltammetry results for the ultrafine CNFs at different scan rates in 1.0 mol/L H2SO4 and; (b) specific capacitance for the u-CNFs (3:7) and CNFs at different scan rates in 1.0 mol/L H2SO4. is largely focused due to its vital demand for clean and sustainable energy. Mainly three types of devices are very important and most commercialized energy storage systems such as batteries, electrochemical capacitors (ECs), and fuel cells [54]. The ultrafine CNFs prepared via electrospinning of PAN/PMMA blend followed by thermal treatment in inert atmosphere were used as a flexible electrode material for the supercapacitor applications [41]. Figure 11 shows the cyclic voltammetry results for the ultrafine CNFs at different scan rates in 1.0 mol/L H2SO4 and spe- cific capacitance for the ultrafine CNFs at different scan rates in 1.0 mol/L H2SO4. The ultrafine CNFs demonstrated an enhanced specific capacitance of 86 F g−1 in 1 mol/L H2SO4. Being a flexible electrode material, this is the highest specific capacitance for the CNFs reported so far. The excellent specific capacitance of ultrafine CNFs is due to its unique properties. The results proved that the fiber diameter of ultrafine CNFs was about 50 nm. The XPS and Raman studies con- firmed the presence of N and O in the form of various functional groups such as pyridinic, benzenoid amine, graphitic N, and N-oxides. High specific surface area of 467.57 m2/g with an excellent pore volume (1.15 cm3 g−1) and pore size (9.48 nm) was determined for the ultrafine CNFs. The BET results confirmed the intercon- nected micro-/meso-/macropores on the surface of the ultrafine CNFs. The Pt nanostructure-supported CNF nanocomposite was employed for the direct oxidation of methanol [49]. It was found that the Pt nanostructure-supported CNF nanocomposite showed better activity than the commercial Pt/C which may be due to the synergistic effect of the underlying anatase surface and the Pt nanostructures with well-defined facets. Alike, Co/CeO2-decorated carbon nanofibers were developed for the methanol oxidation [48]. The results showed that the electrocatalytic activity of the Co/CeO2-decorated carbon nanofibers toward methanol oxidation was excellent. Interestingly, the introduced catalyst revealed negative onset potential (50 mV vs. Ag/ AgCl) which is a superior value among the reported non-precious electrocatalyst. 4. Conclusion Electrospinning is one of the simple and effective techniques for the fabrication of carbon nanofiber. Certainly, metal-supported carbon nanofibers demonstrated excellent activity in various applications such as catalysis, energy, and environ- mental. In this chapter, we have summarized the recent progress in the research on the preparation methods, characterization, and applications of electrospun carbon nanofibers and its composites. 10

PDF Image | Preparation, Characterization, and Applications of Electrospun Carbon Nanofibers

PDF Search Title:

Preparation, Characterization, and Applications of Electrospun Carbon Nanofibers

Original File Name Searched:

68337.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)