logo

Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials

PDF Publication Title:

Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials ( review-electrospun-carbon-nanofiber-based-negative-electrode )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Electrochem 2021, 2 246 13. Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [CrossRef] 14. Chen, H.; Hu, L.; Chen, M.; Yan, Y.; Wu, L. Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapac- itor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942. [CrossRef] 15. Liang, H.; Jia, H.; Lin, T.; Wang, Z.; Li, C.; Chen, S.; Qi, J.; Cao, J.; Fei, W.; Feng, J. Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors. J. Colloid Interface Sci. 2019, 554, 59–65. [CrossRef] [PubMed] 16. Yang, J.; Yu, C.; Hu, C.; Wang, M.; Li, S.; Huang, H.; Bustillo, K.; Han, X.; Zhao, C.; Guo, W.; et al. Surface-Confined Fabrication of Ultrathin Nickel Cobalt-Layered Double Hydroxide Nanosheets for High-Performance Supercapacitors. Adv. Funct. Mater. 2018, 28, 1803272. [CrossRef] 17. Wei, Z.; Yuan, J.; Tang, S.; Wu, D.; Wu, L. Porous nanorods of nickel–cobalt double hydroxide prepared by electrochemical co-deposition for high-performance supercapacitors. J. Colloid Interface Sci. 2019, 542, 15–22. [CrossRef] 18. Li, L.; Zhang, M.; Zhang, X.; Zhang, Z. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapaci- tors. J. Power Sources 2017, 364, 234–241. [CrossRef] 19. Grote, F.; Zhao, H.; Lei, Y. Self-supported carbon coated TiN nanotube arrays: Innovative carbon coating leads to an improved cycling ability for supercapacitor applications. J. Mater. Chem. A 2015, 3, 3465–3470. [CrossRef] 20. Han, X.; Zhang, D.; Qin, Y.; Kong, X.; Zhang, F.; Lei, X. Construction of Ta-Cu7S4 negative electrode for high-performance all-solid-state asymmetric supercapacitor. Chem. Eng. J. 2021, 403, 126471. [CrossRef] 21. Sun, G.; Ren, H.; Shi, Z.; Zhang, L.; Wang, Z.; Zhan, K.; Yan, Y.; Yang, J.; Zhao, B. V2O5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte. J. Colloid Interface Sci. 2021, 588, 847–856. [CrossRef] 22. Zheng, K.; Zeng, Y.; Liu, S.; Zeng, C.; Tong, Y.; Zheng, Z.; Zhu, T.; Lu, X. Valence and surface modulated vanadium oxide nanowires as new high-energy and durable negative electrode for flexible asymmetric supercapacitors. Energy Storage Mater. 2019, 22, 410–417. [CrossRef] 23. Zhang, T.; Kong, L.-B.; Liu, M.-C.; Dai, Y.-H.; Yan, K.; Hu, B.; Luo, Y.-C.; Kang, L. Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Mater. Des. 2016, 112, 88–96. [CrossRef] 24. Upadhyay, K.K.; Nguyen, T.; Silva, T.M.; Carmezim, M.J.; Montemor, M.F. Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochim. Acta 2017, 225, 19–28. [CrossRef] 25. Long, C.; Wei, T.; Yan, J.; Jiang, L.; Fan, Z. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. ACS Nano 2013, 7, 11325–11332. [CrossRef] 26. Luo, J.; Zheng, Z.; Kumamoto, A.; Unah, W.I.; Yan, S.; Ikuhara, Y.H.; Xiang, X.; Zu, X.; Zhou, W. PEDOT coated iron phosphide nanorod arrays as high-performance supercapacitor negative electrodes. Chem. Commun. 2018, 54, 794–797. [CrossRef] 27. Liang, B.; Zheng, Z.; Retana, M.; Lu, K.; Wood, T.; Ai, Y.; Zu, X.; Zhou, W. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 2019, 30, 295401. [CrossRef] 28. Tiwari, A.P.; Chhetri, K.; Kim, H.; Ji, S.; Chae, S.-H.; Kim, T.; Kim, H.Y. Self-assembled polypyrrole hierarchical porous networks as the cathode and porous three dimensional carbonaceous networks as the anode materials for asymmetric supercapacitor. J. Energy Storage 2021, 33, 102080. [CrossRef] 29. Hsu, Y.-H.; Lai, C.-C.; Ho, C.-L.; Lo, C.-T. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors. Electrochim. Acta 2014, 127, 369–376. [CrossRef] 30. Yang, Z.-Y.; Zhao, Y.-F.; Xiao, Q.-Q.; Zhang, Y.-X.; Jing, L.; Yan, Y.-M.; Sun, K.-N. Controllable Growth of CNTs on Graphene as High-Performance Electrode Material for Supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 8497–8504. [CrossRef] 31. Zhi, M.; Liu, S.; Hong, Z.; Wu, N. Electrospun activated carbon nanofibers for supercapacitor electrodes. RSC Adv. 2014, 4, 43619–43623. [CrossRef] 32. Tiwari, A.P.; Chae, S.-H.; Ojha, G.P.; Dahal, B.; Mukhiya, T.; Lee, M.; Chhetri, K.; Kim, T.; Kim, H.-Y. Three-dimensional porous carbonaceous network with in-situ entrapped metallic cobalt for supercapacitor application. J. Colloid Interface Sci. 2019, 553, 622–630. [CrossRef] [PubMed] 33. Tian, X.; He, Y.; Song, Y.; Yang, T.; Li, X.; Liu, Z. Flexible Cross-Linked Electrospun Carbon Nanofiber Mats Derived from Pitch as Dual-Functional Materials for Supercapacitors. Energy Fuels 2020, 34, 14975–14985. [CrossRef] 34. Zheng, S.; Li, Q.; Xue, H.; Pang, H.; Xu, Q. A highly alkaline-stable metal oxide@ metal–organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 2020, 7, 305–314. [CrossRef] 35. Siraj, N.; Macchi, S.; Berry, B.; Viswanathan, T. Metal-Free Carbon-Based Supercapacitors—A Comprehensive Review. Electrochem 2020, 1, 410–438. [CrossRef] 36. Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785. [CrossRef] 37. Denmark, I.; Macchi, S.; Watanabe, F.; Viswanathan, T.; Siraj, N. Effect of KOH on the Energy Storage Performance of Molasses- Based Phosphorus and Nitrogen Co-Doped Carbon. Electrochem 2021, 2, 29–40. [CrossRef] 38. Wang, L.; Zhang, G.; Zhang, X.; Shi, H.; Zeng, W.; Zhang, H.; Liu, Q.; Li, C.; Liu, Q.; Duan, H. Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 14801–14810. [CrossRef] 39. Kshetri, T.; Tran, D.T.; Nguyen, D.C.; Kim, N.H.; Lau, K.-T.; Lee, J.H. Ternary graphene-carbon nanofibers-carbon nanotubes structure for hybrid supercapacitor. Chem. Eng. J. 2020, 380, 122543. [CrossRef]

PDF Image | Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials

review-electrospun-carbon-nanofiber-based-negative-electrode-011

PDF Search Title:

Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials

Original File Name Searched:

A_Review_of_Electrospun_Carbon_Nanofiber-Based_Neg.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP