Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials

PDF Publication Title:

Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials ( review-electrospun-carbon-nanofiber-based-negative-electrode )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 014

Electrochem 2021, 2 249 90. El-Deen, A.G.; Barakat, N.A.M.; Khalil, K.A.; Kim, H.Y. Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J. Chem. 2014, 38, 198–205. [CrossRef] 91. Zhou, Z.; Liu, T.; Khan, A.U.; Liu, G. Block copolymer–based porous carbon fibers. Sci. Adv. 2019, 5, eaau6852. [CrossRef] 92. Wang, C.; Liu, C.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 2017, 53, 1751–1754. [CrossRef] 93. Li, W.-H.; Ding, K.; Tian, H.-R.; Yao, M.-S.; Nath, B.; Deng, W.-H.; Wang, Y.; Xu, G. Conductive Metal–Organic Framework Nanowire Array Electrodes for High-Performance Solid-State Supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067. [CrossRef] 94. Peng, S.; Li, L.; Kong Yoong Lee, J.; Tian, L.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016, 22, 361–395. [CrossRef] 95. Lai, C.-C.; Lo, C.-T. Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors. Electrochim. Acta 2015, 183, 85–93. [CrossRef] 96. Sari, F.N.I.; Ting, J.-M. Direct Growth of MoS2 Nanowalls on Carbon Nanofibers for Use in Supercapacitor. Sci. Rep. 2017, 7, 5999. [CrossRef] [PubMed] 97. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X.W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Adv. Mater. 2012, 24, 5166–5180. [CrossRef] [PubMed] 98. Lin, T.; Chen, I.W.; Liu, F.; Yang, C.; Bi, H.; Xu, F.; Huang, F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508. [CrossRef] 99. Xue, Y.; Ding, Y.; Niu, J.; Xia, Z.; Roy, A.; Chen, H.; Qu, J.; Wang, Z.L.; Dai, L. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 2015, 1, e1400198. [CrossRef] 100. Kim,C.;Jeong,Y.I.;Ngoc,B.T.N.;Yang,K.S.;Kojima,M.;Kim,Y.A.;Endo,M.;Lee,J.-W.SynthesisandCharacterizationofPorous Carbon Nanofibers with Hollow Cores Through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs. Small 2007, 3, 91–95. [CrossRef] 101. Mukhiya, T.; Dahal, B.; Ojha, G.P.; Chhetri, K.; Lee, M.; Kim, T.; Chae, S.-H.; Tiwari, A.P.; Muthurasu, A.; Kim, H.Y. Silver nanoparticles entrapped cobalt oxide nanohairs/electrospun carbon nanofibers nanocomposite in apt architecture for high performance supercapacitors. Compos. Part B Eng. 2019, 178, 107482. [CrossRef] 102. Wang,H.;Yang,X.;Wu,Q.;Zhang,Q.;Chen,H.;Jing,H.;Wang,J.;Mi,S.-B.;Rogach,A.L.;Niu,C.EncapsulatingSilica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage. ACS Nano 2018, 12, 3406–3416. [CrossRef] [PubMed] 103. Yan,J.;Dong,K.;Zhang,Y.;Wang,X.;Aboalhassan,A.A.;Yu,J.;Ding,B.Multifunctionalflexiblemembranesfromsponge-like porous carbon nanofibers with high conductivity. Nat. Commun. 2019, 10, 5584. [CrossRef] 104. Yang,W.;Zhou,J.;Wang,S.;Zhang,W.;Wang,Z.;Lv,F.;Wang,K.;Sun,Q.;Guo,S.Freestandingfilmmadebynecklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612. [CrossRef] 105. Sun,M.-H.;Huang,S.-Z.;Chen,L.-H.;Li,Y.;Yang,X.-Y.;Yuan,Z.-Y.;Su,B.-L.Applicationsofhierarchicallystructuredporous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563. [CrossRef] 106. Wu,H.B.;Lou,X.W.Metal-organicframeworksandtheirderivedmaterialsforelectrochemicalenergystorageandconversion: Promises and challenges. Sci. Adv. 2017, 3, eaap9252. [CrossRef] 107. Xie,X.-C.;Huang,K.-J.;Wu,X.Metal–organicframeworkderivedhollowmaterialsforelectrochemicalenergystorage.J.Mater. Chem. A 2018, 6, 6754–6771. [CrossRef] 108. Li,Y.;Xu,Y.;Yang,W.;Shen,W.;Xue,H.;Pang,H.MOF-DerivedMetalOxideCompositesforAdvancedElectrochemicalEnergy Storage. Small 2018, 14, 1704435. [CrossRef] [PubMed] 109. Arbulu,R.C.;Jiang,Y.-B.;Peterson,E.J.;Qin,Y.Metal–OrganicFramework(MOF)Nanorods,Nanotubes,andNanowires.Angew. Chem. Int. Ed. 2018, 57, 5813–5817. [CrossRef] [PubMed] 110. Li,G.-C.;Liu,P.-F.;Liu,R.;Liu,M.;Tao,K.;Zhu,S.-R.;Wu,M.-K.;Yi,F.-Y.;Han,L.MOF-derivedhierarchicaldouble-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans. 2016, 45, 13311–13316. [CrossRef] [PubMed] 111. Yu, C.; Wang, Y.; Cui, J.; Yu, D.; Zhang, X.; Shu, X.; Zhang, J.; Zhang, Y.; Vajtai, R.; Ajayan, P.; et al. MOF-74 derived porous hybrid metal oxide hollow nanowires for high-performance electrochemical energy storage. J. Mater. Chem. A 2018, 6, 8396–8404. [CrossRef] 112. Na,K.;Choi,K.M.;Yaghi,O.M.;Somorjai,G.A.MetalNanocrystalsEmbeddedinSingleNanocrystalsofMOFsGiveUnusual Selectivity as Heterogeneous Catalysts. Nano Lett. 2014, 14, 5979–5983. [CrossRef] 113. Xia, W.; Qu, C.; Liang, Z.; Zhao, B.; Dai, S.; Qiu, B.; Jiao, Y.; Zhang, Q.; Huang, X.; Guo, W.; et al. High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite. Nano Lett. 2017, 17, 2788–2795. [CrossRef] 114. Muthurasu,A.;Chae,S.-H.;Kim,T.;Mukhiya,T.;Kim,H.Y.Template-AssistedFabricationofZnO/Co3O4One-Dimensional Metal–Organic Framework Array Decorated with Amorphous Iron Oxide/Hydroxide Nanoparticles as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. Energy Fuels 2020, 34, 7716–7725. [CrossRef] 115. Tan,Y.;Meng,L.;Wang,Y.;Dong,W.;Kong,L.;Kang,L.;Ran,F.Negativeelectrodematerialsofmolybdenumnitride/N-doped carbon nano-fiber via electrospinning method for high-performance supercapacitors. Electrochim. Acta 2018, 277, 41–49. [CrossRef]

PDF Image | Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials

PDF Search Title:

Review of Electrospun Carbon Nanofiber-Based Negative Electrode Materials

Original File Name Searched:

A_Review_of_Electrospun_Carbon_Nanofiber-Based_Neg.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)