logo

SCO2 Producing Nanographine Platelets

PDF Publication Title:

SCO2 Producing Nanographine Platelets ( sco2-producing-nanographine-platelets )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

US 8,696,938B2 56 (S)Jang,etal.3.4Succeededinisolatingsingle-layerand multi-layergraphenestructuresfrompartialycarbon ized or graphitized polymeric carbons, which were obtainedfromapolymerorpitchprecursor.Carboniza tion involves linking aromatic molecules or planar cyclicchainstoformgraphenedomainsorislandsinan esentialy amorphous carbon matrix. For instance, polymericcarbonfiberswereobtainedbycarbonizing polyacrylonitrile(PAN)fiberstoadesiredextentthatthe fiberwascomposedofindividualgrapheneshetsiso10 latedorseparatedfromeachotherbyanamorphous (X)X.Yang,etal.44 synthesizednanographeneshets withlengthsofupto12nmusingamethodthatbegan withSuzuki-Miyauracouplingof1,4-diodo-2,3,5,6- tetraphenyl-benzenewith4-bromophenylboronicacid. Theresultinghexaphenylbenzenederivativewasfurther derivatizedandring-fusedintoSmallgrapheneshets. Thisisaslowprocessthatthusfarhasproducedvery Smallgrapheneshets. Thereareseveralmajorisuesassociatedwiththeafore mentionedproceses.Theseinclude,forinstance: (1)Inmostofthesemethodsofgraphiteintercalationand carbonmatrix.Theresultingfiberswerethensubjected exfoliation,undesirablechemicalsareused.Consequently, toasolventextraction,orintercalation/exfoliationtreat atediouswashingstepisrequired,whichproducescon ment.Grapheneplateletswerethenextractedfromthese fibersusingabalmilingprocedure. (t)Mack,Viculis,andco-workers38.39developedalow 15 taminatedwastewaterthatrequirescostlydisposalsteps. (2)TheGOnanoplateletspreparedbyApproach1exhibitan electricalconductivitytypicalyseveralordersofmagni tudelowerthantheconductivityofpristineNGPs.Even temperatureprocessthatinvolvedintercalatinggraphite withpotassiummeltandcontactingtheresultingK-in tercalatedgraphitewithalcohol,producingviolently exfoliatedgraphitecontainingmanyultra-thinNGPs. Theprocessmustbecarefulyconductedinavacuumor anextremelydrygloveboxenvironmentsincepure alkali metals. Such as potassium and Sodium, are extremelysensitivetomoistureandposeanexplosion danger.Itisquestionableifthisprocessiseasilyame 25 nabletothemassproductionofnano-scaledplatelets. Onemajoradvantageofthisprocessisthenotionthatit producesnon-oxidizedgrapheneshetssincenoacid/ normallypristinegrapheneandhighlyconducting.How oxidizerintercalationorahightemperatureisinvolved. ever,otherthanthedirectultrasonicationmethoddevel (u)In2004,Novoselov,Geim,andco-workers 1.2 pre 30 opedbytheaplicantsearlier54,theseprocessesarenot paredsingle-shetgraphenebyremovinggraphenefrom amenabletolarge-scaleproductionofNGPswithareason agraphitesampleoneshetatatimeusinga"Scotch ablecost. tape'method.Althoughthismethodisnotamenableto Inanattempttoaddresstheseisues,theaplicantshave large-scaleproductionofNGPs,theirworkdidspur globalyincreasinginterestinnanographenematerials,35 mostlymotivatedbythethoughtsthatgraphenecouldbe usefulfordevelopingnovelelectronicdevices. (v)ZhamuandJang54developedaveryefectivewayof exfoliating/separatingNGPsfromnaturalgraphiteand otherlaminargraphiticmaterialsbyexposingthemate40 rial(withoutanyintercalationoroxidation)toanultra Sonicationtreatment.Thisprocessmaybeconsideredas peelingoffgraphenelayersatarateof20,000layersper second(iftheultrasonicfrequencyis20kHz)orhigher (ifhigherfrequency).TheresultingNGPsarepristine45 graphenewithoutanyintentionalyaddedorbonded OXygen. Approach3:EpitaxialGrowthandChemicalVaporDeposi tionofNanoGrapheneSheetsonInorganicCrystalSurfaces previouslydisclosedaprocessforexfoliatingalayeredmate rialtoproducenano-scaledplateletshavingathickness smallerthan100nmRef.57.Theprocesscomprises:(a) chargingalayeredmaterialtoanintercalationchambercom prisingagaseousenvironmentatafirsttemperatureandafirst pressureSuficienttocausegasspeciestopenetrateintoan interstitialspacebetweenlayersofthelayeredmaterial,form ingagas-intercalatedlayeredmaterial;and(b)operatinga dischargemeanstorapidlyejectthegas-intercalatedlayered materialthroughanozzleintoanexfoliationZoneatasecond pressureandasecondtemperature,allowinggasspecies residingintheinterstitialspacetoexfoliatethelayeredmate rialforproducingtheplatelets.Oneadvantageofthisprocess is the notion that itdoes not involve the utilization of un desirableacids(suchasSulfuricacidornitricacid)oroxidiz ers(suchasSodiumchlorateorpotassiumpermanganate). ThegasenvironmentusedintheprocesscanincludeaSuper criticalfluid,buttheintercalatedlayeredmaterialmustbe rapidlydischargedoutoftheintercalationchamber. (w)Small-scaleproductionofultra-thingrapheneshets50 onasubstratecanbeobtainedbythermaldecomposi tion-basedepitaxialgrowth40andalaserdesorption ionizationtechnique41.Ascanningprobemicroscope Inarelatedtopic,Kaschak,etal.55proposedamethodof afterchemicalreduction,theGO stilexhibitsamuch lowerconductivitythanpristineNGPs.Itappearsthatthe preparationofintercalatedgraphite,whichinvolvestheuse ofanoxidizingagentsuchasnitricacidorpotassium permanganate,typicalyandnecesarilyrequiresgraphite tobeheavilyoxidized.Completereductionofthesehighly oxidizedgraphiteplateletstorecovertheperfectgraphene structurehithertohasnotbeensucesfulyatained. (3)TheNGPsproducedbyApproach2andApproach3are modifyinggraphitebyintroducingaSupercriticalfluidinto intersticesofchemicallyintercalatedorintercalated/oxi dizedgraphite(ratherthantheoriginalnaturalgraphite).The intersticesofintercalatedand/oroxidizedgraphitehadbeen expandedandchemicallymodifiedduetothepresenceof intercalantspecies(suchasSulfuricacid)oroxidation-in ducedfunctionalgroups(suchascarboxyl).Kaschak,etal. wasusedbyRoyetal.42andbyLuetal.43to manipulategraphenelayersatthestepedgesofgraphite55 andetchedHOPG,respectively,withthegoaloffabri catingultra-thinnano-structures.Itwasnotclearif singlegrapheneshetswereobtainedusingthistech niquebyeithergroup.Epitaxialfilmsofgraphitewith onlyoneorafewatomiclayersareoftechnologicaland60 Scientificsignificanceduetotheirpeculiarcharacteris 55didnotteachabouttheapproachofdirectlyintercalating ticsandgreatpotentialasadeviceSubstrate.The grapheneshetsproducedaremeanttobeusedforfuture nano-electronicaplications,ratherthancomposite reinforcements. Approach4:TheBottom-UpApproach(Synthesisof GraphenefromSmallMolecules) 65 theun-treatednaturalflakegraphitewithasupercriticalfluid; nordidtheyteachabouttheapproachofintercalatingand exfoliatinggraphiteusingthesameSupercriticalfluid.The modifiedgraphiteasproposedbyKaschak,etal.55stil requiredahightemperatureexposurestep,typicalyat700 1200°C.,toexfoliatetheintercalatedandmodifiedgraphite.

PDF Image | SCO2 Producing Nanographine Platelets

sco2-producing-nanographine-platelets-010

PDF Search Title:

SCO2 Producing Nanographine Platelets

Original File Name Searched:

US8696938.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP