logo

Supercritical CO2 Synthesis of Freestanding Se1-xSx Foamy Cathodes for High-Performance Li-Se1-xSx Battery

PDF Publication Title:

Supercritical CO2 Synthesis of Freestanding Se1-xSx Foamy Cathodes for High-Performance Li-Se1-xSx Battery ( supercritical-co2-synthesis-freestanding-se1-xsx-foamy-catho )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Lu et al. Advanced Rechargeable Lithium Batteries Du, H., Feng, S., Luo, W., Zhou, L., and Mai, L. (2020). Advanced Li-Se S Battery System: Electrodes and Electrolytes. J. Mater. Sci. Technol. 55, 1–15. doi:10.1016/j.jmst.2020.01.001 Fan, H.-N., Chen, S.-L., Chen, X.-H., Tang, Q.-L., Hu, A.-P., Luo, W.-B., et al. (2018). 3D Selenium Sulfide@carbon Nanotube Array as Long-Life and High- Rate Cathode Material for Lithium Storage. Adv. Funct. Mater. 28, 1805018. doi:10.1002/adfm.201805018 Fang, R., Liang, C., Xia, Y., Xiao, Z., Huang, H., Gan, Y., et al. (2018a). Supercritical CO2 Mediated Incorporation of Sulfur into Carbon Matrix as Cathode Materials Towards High-Performance Lithium-Sulfur Batteries. J. Mater. Chem. A. 6, 212–222. doi:10.1039/C7TA08768C Fang, R., Lu, C., Zhong, Y., Xiao, Z., Liang, C., Huang, H., et al. (2020). Puffed rice Carbon with Coupled Sulfur and Metal Iron for High-Efficiency Mercury Removal in Aqueous Solution. Environ. Sci. Technol. 54, 2539–2547. doi:10.1021/acs.est.9b07385 Fang, R., Xia, Y., Liang, C., He, X., Huang, H., Gan, Y., et al. (2018b). Supercritical CO2-assisted Synthesis of 3D Porous SiOC/Se Cathode for Ultrahigh Areal Capacity and Long Cycle Life Li-Se Batteries. J. Mater. Chem. A. 6, 24773–24782. doi:10.1039/C8TA09758E Guan, B., Zhang, Y., Fan, L., Wu, X., Wang, M., Qiu, Y., et al. (2019). Blocking Polysulfide with Co2B@CNT via "Synergetic Adsorptive Effect" toward Ultrahigh-Rate Capability and Robust Lithium-Sulfur Battery. ACS Nano 13, 6742–6750. doi:10.1021/acsnano.9b01329 Guo, B., Yang, T., Du, W., Ma, Q., Zhang, L.-Z., Bao, S.-J., et al. (2019). Double-walled N-Doped carbon@NiCo2S4 Hollow Capsules as SeS2 Hosts for Advanced Li-SeS2 Batteries. J. Mater. Chem. A. 7, 12276–12282. doi:10.1039/C9TA02695A Guo, S.-P., Li, C.-X., Chi, Y., Ma, Z., and Xue, H.-G. (2016). Novel 3-D Network SeS/NCPAN Composites Prepared by One-Pot In-Situ Solid-State Method and its Electrochemical Performance as Cathode Material for Lithium-Ion Battery. J. Alloys Compd. 664, 92–98. doi:10.1016/j.jallcom.2015.12.208 Han, B., Li, X., Zhou, Y., Gao, X., Qu, W., Zhang, S., et al. (2019). "Bubble-linking- bubble" Hybrid Fibers Filled with Ultrafine TiN: a Robust and Efficient Platform Achieving Fast Kinetics, strong Ion Anchoring and High Areal Loading for Selenium Sulfide. J. Mater. Chem. A. 7, 18404–18416. doi:10.1039/C9TA05527D He, J., Lv, W., Chen, Y., Xiong, J., Wen, K., Xu, C., et al. (2018). Direct Impregnation of SeS2 into a MOF-Derived 3D Nanoporous Co-N-C Architecture towards superior Rechargeable Lithium Batteries. J. Mater. Chem. A. 6, 10466–10473. doi:10.1039/C8TA02434K Hu, J., Ren, Y., and Zhang, L. (2020). Dual-confined SeS2 Cathode Based on Polyaniline- Assisted Double-Layered Micro/mesoporous Carbon Spheres for Advanced Li-SeS2 Battery. J. Power Sourc. 455, 227955. doi:10.1016/j.jpowsour.2020.227955 Hu, J., Zhong, H., Yan, X., and Zhang, L. (2018). Confining Selenium Disulfide in 3D Sulfur-Doped Mesoporous Carbon for Rechargeable Lithium Batteries. Appl. Surf. Sci. 457, 705–711. doi:10.1016/j.apsusc.2018.06.296 Li, X., Liang, J., Zhang, K., Hou, Z., Zhang, W., Zhu, Y., et al. (2015). Amorphous S-Rich S1−xSex/C (X ≤ 0.1) Composites Promise Better Lithium-Sulfur Batteries in a Carbonate-Based Electrolyte. Energy Environ. Sci. 8, 3181–3186. doi:10.1039/C5EE01470K Li, Z., Zhang, J., Lu, Y., and Lou, X. W. (2018). A Pyrolyzed Polyacrylonitrile/ selenium Disulfide Composite Cathode with Remarkable Lithium and Sodium Storage Performances. Sci. Adv. 4, eaat1687. doi:10.1126/sciadv.aat1687 Li, Z., Zhang, J., Wu, H. B., and Lou, X. W. D. (2017). An Improved Li-SeS2 Battery with High Energy Density and Long Cycle Life. Adv. Energ. Mater. 7, 1700281. doi:10.1002/aenm.201700281 Lin, S., Chen, Y., Wang, Y., Cai, Z., Xiao, J., Muhmood, T., et al. (2021). Three- dimensional Ordered Porous Nanostructures for Lithium-Selenium Battery Cathodes that Confer superior Energy-Storage Performance. ACS Appl. Mater. Inter. 13, 9955–9964. doi:10.1021/acsami.0c21065 Luo, C., Zhu, Y., Wen, Y., Wang, J., and Wang, C. (2014). Carbonized Polyacrylonitrile-Stabilized SeSxCathodes for Long Cycle Life and High Power Density Lithium Ion Batteries. Adv. Funct. Mater. 24, 4082–4089. doi:10.1002/adfm.201303909 Nazarian-Samani, M., Haghighat-Shishavan, S., Nazarian-Samani, M., Kashani-Bozorg, S. F., Ramakrishna, S., and Kim, K.-B. (2021). Perforated Two-Dimensional Nanoarchitectures for Next-Generation Batteries: Recent Advances and Extensible Perspectives. Prog. Mater. Sci. 116, 100716. doi:10.1016/j.pmatsci.2020.100716 Pham, V. H., Boscoboinik, J. A., Stacchiola, D. J., Self, E. C., Manikandan, P., Nagarajan, S., et al. (2019). Selenium-sulfur (SeS) Fast Charging Cathode for Sodium and Lithium Metal Batteries. Energ. Storage Mater. 20, 71–79. doi:10.1016/j.ensm.2019.04.021 Shen, C., Wang, T., Xu, X., and Tian, X. (2020). 3D Printed Cellular Cathodes with Hierarchical Pores and High Mass Loading for Li-SeS2 Battery. Electrochimica Acta 349, 136331. doi:10.1016/j.electacta.2020.136331 Sun, F., Cheng, H., Chen, J., Zheng, N., Li, Y., and Shi, J. (2016). Heteroatomic SenS8-N Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries. ACS Nano 10, 8289–8298. doi:10.1021/acsnano.6b02315 Sun, J., Du, Z., Liu, Y., Ai, W., Wang, K., Wang, T., et al. (2021). State-Of-The-Art and Future Challenges in High Energy Lithium-Selenium Batteries. Adv. Mater. 33, 2003845. doi:10.1002/adma.202003845 Tang, C., Li, B.-Q., Zhang, Q., Zhu, L., Wang, H.-F., Shi, J.-L., et al. (2016). CaO- templated Growth of Hierarchical Porous Graphene for High-Power Lithium-Sulfur Battery Applications. Adv. Funct. Mater. 26, 577–585. doi:10.1002/adfm.201503726 Wei, Y., Tao, Y., Kong, Z., Liu, L., Wang, J., Qiao, W., et al. (2016). Unique Electrochemical Behavior of Heterocyclic Selenium-Sulfur Cathode Materials in Ether-Based Electrolytes for Rechargeable Lithium Batteries. Energ. Storage Mater. 5, 171–179. doi:10.1016/j.ensm.2016.07.005 Xu, F., Tang, Z., Huang, S., Chen, L., Liang, Y., Mai, W., et al. (2015). Facile Synthesis of Ultrahigh-Surface-Area Hollow Carbon Nanospheres for Enhanced Adsorption and Energy Storage. Nat. Commun. 6, 7221. doi:10.1038/ncomms8221 Xu, Q.-T., Xue, H.-G., and Guo, S.-P. (2019). Status and Prospects of SexSy Cathodes for Lithium/sodium Storage. Inorg. Chem. Front. 6, 1326–1340. doi:10.1039/C9QI00278B Yao, Y., Zeng, L., Hu, S., Jiang, Y., Yuan, B., and Yu, Y. (2017). Binding S0.6 Se0.4 in 1D Carbon Nanofiber with C-S Bonding for High-Performance Flexible Li-S Batteries and Na-S Batteries. Small 13, 1603513. doi:10.1002/smll.201603513 Yuan, Y. F., Chen, Q., Zhu, M., Cai, G. S., and Guo, S. Y. (2021a). Nano Tube-In- Tube CNT@void@TiO2@C with Excellent Ultrahigh Rate Capability and Long Cycling Stability for Lithium Ion Storage. J. Alloys Compd. 851, 156795. doi:10.1016/j.jallcom.2020.156795 Yuan, Y. F., Zhao, W. C., Chen, L., Cai, G. S., and Guo, S. Y. (2021b). CoO Hierarchical Mesoporous nanospheres@TiO2@C for High-Performance Lithium-Ion Storage. Appl. Surf. Sci. 556, 149810. doi:10.1016/j.apsusc.2021.149810 Zhang, J., Li, Z., and Lou, X. W. D. (2017). A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angew. Chem. Int. Ed. 56, 14107–14112. doi:10.1002/ange.20170810510.1002/anie.201708105 Zhang, W., Li, S., Wang, L., Wang, X., and Xie, J. (2020). Insight into Sulfur-Rich Selenium Sulfide/pyrolyzed Polyacrylonitrile Cathodes for Li-S Batteries. Sustain. Energ. Fuels 4, 3588–3596. doi:10.1039/D0SE00512F Zheng, Y. Q., Yuan, Y. F., Tong, Z. W., Yin, H., Yin, S. M., and Guo, S. Y. (2020). Watermelon-like TiO2 Nanoparticle (P25)@microporous Amorphous Carbon Sphere with Excellent Rate Capability and Cycling Performance for Lithium- Ion Batteries. Nanotechnology 31, 215407. doi:10.1088/1361-6528/ab73be Zhu, T., Pang, Y., Wang, Y., Wang, C., and Xia, Y. (2018). S0.87Se0.13/CPAN Composites as High Capacity and Stable Cycling Performance Cathode for Lithium Sulfur Battery. Electrochimica Acta 281, 789–795. doi:10.1016/ j.electacta.2018.06.026 Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Copyright © 2021 Lu, Fang, Wang, Xiao, kumar, Gan, He, Huang, Zhang and Xia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Frontiers in Chemistry | www.frontiersin.org 7 July 2021 | Volume 9 | Article 738977

PDF Image | Supercritical CO2 Synthesis of Freestanding Se1-xSx Foamy Cathodes for High-Performance Li-Se1-xSx Battery

supercritical-co2-synthesis-freestanding-se1-xsx-foamy-catho-007

PDF Search Title:

Supercritical CO2 Synthesis of Freestanding Se1-xSx Foamy Cathodes for High-Performance Li-Se1-xSx Battery

Original File Name Searched:

fchem-09-738977.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP