Supercritical Fluid Deposition Of Thin Metal Films

PDF Publication Title:

Supercritical Fluid Deposition Of Thin Metal Films ( supercritical-fluid-deposition-of-thin-metal-films )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 018

2.9: X-ray photoelectron spectroscopy ruthenium 3d orbital binding energy region of a highly conformal, 83 nm thick ruthenium film deposited by SFD. Reaction conditions: 260 °C, 172 bar, 0.09 wt. % Ru(tmhd)2cod, 0.3 wt. % hydrogen, 3 minute heating .....................................................................................................31 2.10: Field-Emission Scanning Electron Microscope top-down image of a 35 nm thick ruthenium film deposited by SFD. Reaction conditions: 310 °C, 90 bar, 0.15 wt. % Ru(tmhd)2cod, 0.6 wt. % hydrogen, 5 minute heating....................................32 2.11: Field Emission Scanning Electron Microscope cross section image of a 77 nm thick ruthenium film deposited by SFD. Reaction conditions: 260 °C, 145 bar, 0.09 wt. % Ru(tmhd)2cod, 0.3 wt. % hydrogen, 3 minute heating......................33 2.12: Atomic Force Microscopy height data indicating mean surface roughness of 1nm. Reaction conditions: 260 °C, 145 bar, 0.09 wt. % Ru(tmhd)2cod, 0.3 wt. % hydrogen, 3 minute heating .................................................................................33 2.13: Temperature dependence of Ru(tmhd)2cod by the Arrhenius law for the supercritical fluid deposition of ruthenium thin films from carbon dioxide. Reaction conditions: 240 °C to 280 °C in 10 °C steps, 172 bar, 0.07 wt. % Ru(tmhd)2cod, 0.3 wt. % hydrogen, 3 minutes heating. Apparent activation energy is 45.3 kJ/mol...........................................................................................35 2.14: Growth rate dependence upon Ru(tmhd)2cod concentration. Reaction conditions: 260 °C and 280 °C, 172 bar, 0.3 wt. % hydrogen, 3 minutes heating. Using differential kinetics (inset), zero order kinetics is observed at high precursor concentration and first order kinetics at lower precursor concentration .............36 2.15: Growth rate dependence upon reaction pressure. Reaction conditions: 260 °C, 135 bar to 200 bar, 0.09 wt. % Ru(tmhd)2cod, 0.3 wt. % hydrogen, 3 minutes heating. Pressure does not influence growth rate over the range of 135 bar to 200 bar .................................................................................................................37 2.16: Growth rate dependence upon hydrogen concentration. Reaction conditions: 260 °C, 0.09 wt. % Ru(tmhd)2cod, 0 wt. % - 0.6 wt. % hydrogen, 3 minutes heating. Using differential kinetics (inset), zero order kinetics is observed at high hydrogen concentration and 2nd order kinetics at lower concentrations. Parasitic deposition is noted at 0.1 wt. % hydrogen and lower..........................................39 2.17: Example of a foiled ruthenium film due to increased stress in the film. Reaction conditions: 260 °C, 172 bar, 0.09 wt. % Ru(tmhd)2cod, 0.6 wt. % hydrogen, 3 minutes heating....................................................................................................40 xvii

PDF Image | Supercritical Fluid Deposition Of Thin Metal Films

PDF Search Title:

Supercritical Fluid Deposition Of Thin Metal Films

Original File Name Searched:

Supercritical-Fluid-Deposition-Of-Thin-Metal-Films-Kinetics-Mec.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)