SYNTHESIS OF GAMMA MONOCLINIC SULFUR

PDF Publication Title:

SYNTHESIS OF GAMMA MONOCLINIC SULFUR ( synthesis-gamma-monoclinic-sulfur )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 038

21 treatment.ThesmothLorentzianasymetricpeakofcar- bonfurtherconfirmsthatsulfurdoesnotreactwiththebare carbonsurface. ElectrochemicalCharacterization 22 lyteandinferinformationaboutthereactionmechanism, diferentialcapacity(dQ/dV)analysisandEISasafunction ofvoltagewereconducted.Aconsistentsinglepeakissen throughoutthe2000cyclesfurthersuportingasingle-phase US 10,991,944B2 FIG.10showstheelectrochemicalperformanceevalua- 5 conversion.Thepeaksminimalyshiftduringthecycling tionofgammasulfurdepositedCNFsusedasfre-standing cathodesinCR2032typecoincelswithreference/counter aslithium.Bothether-andcarbonate-basedelectrolytes wereemployedtounderstandtheelectrochemicalphenom sugestinggoodmaterialintegrityandonlyaminimal increaseinresistanceduringcycling.Asanextstep,the electrochemicalimpedancespectroscopy(EIS)measure mentsofthelithiumhalf-celswithgammasulfurdeposited enonineachsystem.Theelectrodedemonstratesarevers-10CNFsascompositecathodeswerecariedoutatvarious ibleelectrochemicalredoxbehaviorinbothetherandcar bonate-basedelectrolytes.However,thecharge-discharge profilesaredrasticalydiferent.(FIG.4a).Theether-based charge-dischargeprofileexhibitsastandardtwo-plateau behaviorasreportedinmostpriorliteraturereports.Thefirst15voltage.Asseninthisfigure,atypicalNyquistplotconsists plateauat2.3Visatributedtotheconversionofsulfurto long-chainpolysulfidesandthesecondplateauat2.1V representstheconversionoflong-chainpolysulfidestoLi2S2 andLi2S(2.1V).However,thesamegammasulfurdepos itedCNFcathodesincarbonateelectrolytesdemonstratea20lowerpotentialfortheentiredischargecycle.Thetrendis singleplateauat2.0Vinthefirstandalconsecutivecycles reversedwhenthebateryischargedbacktoahigher duringdischargeand2.2Vinchargeprofilessugestingthe potential.Thisobservationcontrastswiththeliterature, posibilityofapolysulfidedigresionroutetodirectlyform whereintheRctisshowntofirstdecreaseandthenincrease lithiumsulfideincarbonateelectrolyte.Thissolid-to-solid backagaininthesamedischargecyclesugestingthe conversionposiblyalsoleadstoahigheroverpotential25formationofsolublepolysulfidesatintermediatevoltages. explainingthelowerplateauvoltageobservedinthecar- TheseintermediatepolysulfidessignificantlylowertheRet bonateelectrolyte.Theelectrochemicalbehaviorisconsis- duetodisapearanceofbothofthesolidinsulatingmate tentwithCVprofiles,whereinthecelswithetherelectrolyte rials—theinitialreactant,sulfurandfinalproduct,LiS.In showtwopeaks,whilethecelswithcarbonateelectrolyte theliterature,theRctofthefinaldischargedcelstilremains onlyshowasinglepeak. 30lowerthantheinitialRct(atOCV)duetoreducedresistance FIG.10Cshowsthelong-termcyclingperformancetested ofLi2Scomparedtopuresulfur.Amonotonicdecreasein undervariousgalvanostaticmodes.Thedischargecapacities Rcduringdischargeinthepresentexperimentsprovides werecalculatedatbothlowandhighcur ratesof0.1C furtherevidencethatweareeliminatingtheformationof and0.5Candthecapacitiesretainedafter10cycleswere polysulfides. 50mAh/gand70mAh/g,respectively.Theresultsforthe35 Toevaluatethepracticalaplicationofthecarbonate dischargecapacitiesatbothlowcurentrate(0.1C)andhigh basedLi–Ssystem,thecelswerecycledwithgamma curentrates(0.5C),areshowninFIGS.18Aand18B, sulfurdeposited-CNFscathodesatvariousCratesand respectively.FIG.10Cshowsthelong-termcyclingdatafor loadings.Asshownearlier,thesebateriesdemonstrate celsmadeusingcarbonateelectrolyte.Thesecelsdemon- stablecapacityata0.5Crateforover2000cycles.To strateultra-stableandprolongedcyclingat0.5Cratefor40demonstratebateryoperationatharshconditions,thebat 2000cycleswithonly0.13%decayaftertheinitial200 teriesweretestedforlongtermcyclingat0.1C.The cycles.Thecelsretainedacapacityof704mAh/gevenafter bateriesprovidedstable~60mAh/gcapacityforover10 200charge-dischargecycles.Theinitialdropincapacity cycleswithasmal0015%decayandacoulombic maybeatributedtothelosofcontactduetovolume eficiency>=9%.Inadition,thesebateriesshowexcelent expansionduringcyclingwhichstabilizesasthecycling45rateperformancewithcapacitiesof170,1080,980,90, proceds.AsshowninFIG.10D,thedischargeprofile continuestoexhibitasingleplateauthroughtheentirecycle lifeof20cycles. 750,600and410mAh/gat1C,2C,5C,10C,15C,30 Cand40C,respectively.Itisinterestingtosethesecels exhibitingacapacityof40mAh/gevenat40Ccore IthasbenestablishedinarecentreportbyKimetal.that spondingtoadischargeandchargetimeofonly~30 polysulfides,ifgenerated,atackcarbonatespeciesvia50seconds.Thetraditionalether-basedbateriesperformonly nucleophilicsubstitutiontoformtheireversibleproducts, upto2Catwhichtheperformancedeterioratessignificantly. thiocarbonateandethyleneglycol,andshutdownfurther FIG.11Bshowsthatthecelsexhibitasimilarsingleplateau electrochemicalactivityafterthefirstcycle.Therefore,our dischargeatalCrates.Suchratecapabilitysugestsefi datasugeststhatthesegammasulfurdepositedCNF-based cientnanoscalecontactbetwenthegamma-monoclinic celscontinuetofolowapolysulfidedigresionroute5sulfurandthehostCNFsandgodinterfacialelectrode throughtheentirecyclingincarbonateelectrolyte,which electrolytecontactowingtothe3Dinter-fiberporousarchi explainsnotonlycontinuedbateryoperationdespitethe tecture.Furthermore,thebinder-frefrestandingformatof presenceofcarbonatespeciesbutalsotheexcelentcycle theCNFhostapearstoprovideuninteruptedelectron stabilityof2000+cycles.Forcomparison,thecyclingdata pathwaysdespitethepresenceofinsulatingsulfur.Thisis inetherelectrolyteisshownwhereinthesematerialsfolow60uniquecomparedtotraditionalslury-basedcathodeswhere astandardroutewithpolysulfidesastheintermediateprod- carbonandsulfurpowdersaremixedtogetherwithlimited ucts.Thecyclingdatainetherelectrolytemaybefoundin tonocontroloverspatialmorphologywhichtherebydete FIG.19.Hereweseagradualdeclineincapacityduetothe rioratesoveralcompositeconductivity.FIG.11Bshowsthe expectedpolysulfideshutlingandsubsequentlosofactive cyclingdataforhighercomercialy-relevantsulfurload material. 65ings.Celswith5mg/cm2ofsulfurdemonstratestable Tofurthercoroboratethisuniqueelectrochemicalbehav- cyclingfor300+cyclesat0.1C.Thisfindingdemonstrates iorofgammamonoclinicphasesulfurincarbonateelectro- thatunconfinedsulfurdepositionusinggammamonoclinic potentialsduringcharge-dischargecycles.FIG.10Fpresents thetypicalNyquistplotsfortheLi–Sbateriesofthe inventionilustratingtheirimpedancetrendsasafunctionof ofasemicircleinthehighfrequencytomediumfrequency range,whichisatributedtotheinterfacialchargetransfer resistance.Thechargetransferresistance(Ret)monotoni calydecreasesasthecathodiccurveprogresestowardsa

PDF Image | SYNTHESIS OF GAMMA MONOCLINIC SULFUR

PDF Search Title:

SYNTHESIS OF GAMMA MONOCLINIC SULFUR

Original File Name Searched:

US10991944.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)