logo

Volcanic Ash Degradation on Thermal Barrier Coatings

PDF Publication Title:

Volcanic Ash Degradation on Thermal Barrier Coatings ( volcanic-ash-degradation-thermal-barrier-coatings )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 005

Abstract Thermal barrier coatings (TBCs) made of yttria stabilized zirconia (YSZ) have been applied to aero engines industry since 1970s. However, because of the increasing operational temperature, TBCs are suffering from molten foreign deposits known as calcium-magnesium-alumino-silicate (CMAS). Molten CMAS sinters YSZ top coat and shortens the lifetime of TBCs. Alumina has been widely proved to prevent CMAS from degradation and is the most common material chosen to avert a CMAS attack in state-of-the-art TBC technology. This study uses real volcanic ash to study the degradation process of TBCs and potential mitigation mechanisms. The results show that, similar to CMAS, volcanic ash severely penetrates the thickness and fills the columnar gaps of the TBC top coat. It is also found that the yttria content of the YSZ top coat decreases substantially with high temperature exposure to volcanic ash, which has a detrimental effect on the phase stability of YSZ. In terms of mitigation, volcanic ash reacts with alumina around 1310 °C, forming anorthite (CaAl2Si2O8), magnetite (Fe3O4), and spinel (Al1.75Mg0.889Mn0.351O4) as reactive products, which, according to the literature, have melting temperatures above that of the volcanic ash studied and the typical values reported for CMAS. Since the new melting temperatures are now above the typical surface operating temperature of turbine components, the melting-induced penetration of volcanic ash and CMAS can be considerably suppressed. ABSTRACT Page 4

PDF Image | Volcanic Ash Degradation on Thermal Barrier Coatings

volcanic-ash-degradation-thermal-barrier-coatings-005

PDF Search Title:

Volcanic Ash Degradation on Thermal Barrier Coatings

Original File Name Searched:

vocanic-ash-degradation.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP