CO2 Capture and in situ Catalytic Transformation

PDF Publication Title:

CO2 Capture and in situ Catalytic Transformation ( co2-capture-and-situ-catalytic-transformation )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 005

Fu et al. In situ Catalytic Transformation SCHEME 3 | CO2 capture and transcarboxylation in the synthesis of carbamates and ureas. CO2 allows the release of CO2 possible, thus promoting the CO2 hydrogenation. By employing pentaethylenehexamine (PEHA) as CO2 absorbent and Ru-based complexes as catalyst, Olah and Surya Prakash group develops a process that combines CO2 capture and the following hydrogenation in an ethereal solvent for the production of MeOH (Kothandaraman et al., 2016a). CO2 from air can be captured by an aqueous solution of PEHA and up to 61% yield of MeOH can be obtained in the triglyme/H2O mixtures at 155◦C in the following hydrogenation (Scheme 7). The resulting MeOH can be easily separated by simple distillation from the reaction mixture. Later, the same group captures CO2 with aqueous amine solution and then in situ hydrogenates the resulting ammonium bicarbonate/carbonate utilizing Ru- and Fe-based pincer complexes in a biphasic solvent system (water/Me-THF) (Kothandaraman et al., 2016b). The superbases (DABCO, TMG, and DBU) shows to be efficient for both CO2 capture and hydrogenation with more than 90% yield of formate under moderate reaction conditions (50 bar H2 at 55◦C) (Scheme 7). The biphasic system features easy separation of product and catalyst and the catalyst can be reused for at least five cycles. Hydrogenation Using Heterogeneous Catalysts Besides homogeneous catalysts, the heterogeneous catalysts were also used in the hydrogenation of CO2 capture products. For example, H. Lin group applies Pd/AC catalyst to the hydrogenation of CO2 capture products originated from ammonia. In the hydrogenation step, the dependence of the activity of CO2 capture products on the solvent is observed (Su et al., 2015a,b). For example, the ammonium bicarbonate in water and ammonium carbamate in 70 wt% ethanol-water solution can offer more than 90% yield of formate under high H2 pressure (5.52 and 2.75 MPa, respectively) at 20◦C. The ammonium carbonate presents similar activity with ammonium carbamate. Identification of the species in the reactant solutions suggests the bicarbonate ion and ethyl carbonate ion, instead of the carbamate ion, are the activation forms of CO2 in the hydrogenation (Scheme 8). Coincidently, Enthaler finds that sodium bicarbonate in methanol can be hydrogenated to sodium formate catalyzed by the nickel hydride complex while CO2 cannot be hydrogenated in the identical conditions, which further confirms the activity of the captured CO2 in hydrogenation (Enthaler et al., 2015). Mertens and coworkers report the in situ hydrogenation of the captured CO2 using Cu/ZnO-Al2O3 as catalyst under retrieval of the CO2 capture reagent N,N-diethylethanolamine (DEEA) (Reller et al., 2014). In the reaction, DEEA can also function as a trapping reagent for the resulting formic acid and drives the hydrogenation forward. The authors find that the generation of the products 2-diethylaminoethylformate and methanol can be regulated by the reaction temperature (Scheme 9). The combination of CO2 capture and hydrogenation realizes the energy integration by using the reaction heat of CO2 hydrogenation in the energy demanding CO2 stripping process. In addition to the liquid absorption system, the alkali metal and alkali earth metal based solid CO2 adsorbents are also developed (Li et al., 2010, 2011; Lee et al., 2011) and applied in the CCU strategy recently. Duyar et al. design a series of novel dual function materials (DFM) consisting of the catalyst and adsorbent components to couple the endothermic CO2 desorption step with the exothermic hydrogenation of CO2 (Duyara et al., 2016). The results show that DFM with the composition of 5% Ru 10% K2 CO3 /Al2 O3 and 5% Ru Frontiers in Chemistry | www.frontiersin.org 5 July 2019 | Volume 7 | Article 525

PDF Image | CO2 Capture and in situ Catalytic Transformation

PDF Search Title:

CO2 Capture and in situ Catalytic Transformation

Original File Name Searched:

fchem-07-00525.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)