logo

CO2 Capture and in situ Catalytic Transformation

PDF Publication Title:

CO2 Capture and in situ Catalytic Transformation ( co2-capture-and-situ-catalytic-transformation )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

Fu et al. In situ Catalytic Transformation valorization of diluted CO2 in waste gas streams or directly from the atmosphere. AUTHOR CONTRIBUTIONS All authors contributed for the writing of the manuscript. L-NH designed this proposal and determined the contents. H-RL wrote the Abstract, Introduction, Conclusion, and Outlook parts. H-CF wrote the Inorganic/organic bases and Ionic liquids parts. FY wrote N-heterocyclic carbenes and N-heterocyclic olefins and frustrated lewis pairs parts. H-RL and L-NH revised the manuscript. REFERENCES Alexander, O., Grube, T., Schiebahn, S., and Stolten, D. (2015). Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ. Sci. 8, 3283–3297. doi: 10.1039/c5ee02591e Ashley, A. E., Thompson, A. L., and O’Hare, D. (2009). Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew. Chem. Int. Ed. 48, 9839–9843. doi: 10.1002/anie.200905466 Barthel, A., Saih, Y., Gimenez, M., Pelletier, J. D. A., Kühn, F. E., D’Elia, V., et al. (2016). Highly integrated CO2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas. Green Chem. 18, 3116–3123. doi: 10.1039/c5gc03007b Berkefeld, A., Piers, W. E., and Parvez, M. (2010). Tandem frustrated lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J. Am. Chem. Soc. 132, 10660–10661. doi: 10.1021/ja105320c Bobadilla, L. F., Riesco-García, J. M., Penelás-Pérez, G., and Urakawa, A. (2016). Enabling continuous capture and catalytic conversion of flue gas CO 2 to syngas in one process. J. CO2 Util. 14, 106–111. doi: 10.1016/j.jcou.2016.04.003 Chapman, A. M., Keyworth, C., Kember, M. R., Lennox, A. J. J., and Williams, C. K. (2015). Adding value to power station captured CO2: tolerant Zn and Mg homogeneous catalysts for polycarbonate polyol production. ACS Catal. 5, 1581–1588. doi: 10.1021/cs501798s Chaturvedi, D., and Ray, S. (2006). Versatile use of carbon dioxide in the synthesis of carbamates. Monatsh. Chem. 137, 127–145. doi: 10.1007/s00706-005-0423-7 Chen, K. H., Shi, G. L., Dao, R. N., Mei, K., Zhou, X. Y., Li, H. R, et al. (2016). Tuning the basicity of ionic liquids for efficient synthesis of alkylidene carbonates from CO2 at atmospheric pressure. Chem. Commun. 52, 7830–7833. doi: 10.1039/c6cc02853e Chen, L., Liu, R. J., and Yan, Q. (2018). Polymer meets frustrated lewis pair: second-generation CO2 -responsive nanosystem for sustainable CO2 conversion. Angew. Chem. Int. Ed. 57, 9336–9340. doi: 10.1002/anie.2018 04034 Ciamician, G. (1912). The Photochemistry of the future. Science 36, 385–394. Dong, L., Wen, J., and Li, W. Y. (2015). A theoretical investigation of substituent effects on the stability and reactivity of N-heterocyclic olefin carboxylates. Org. Biomol. Chem. 13, 8533–8544. doi: 10.1039/c5ob01021g Duyara, M. S., Wang, S., Arellano-Treviño, M. A., and Farrauto, R. J. (2016). CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: an update. J. CO2 Util. 15, 65–71. doi: 10.1016/j.jcou.2016.05.003 Enthaler, S., Brück, A., Kammer, A., Junge, H., Irran, E., and Gülak, S. (2015). Exploring the reactivity of nickel pincer complexes in the decomposition of formic acid to CO2/H2 and the hydrogenation of NaHCO3 to HCOONa. ChemCatChem 7, 65–69. doi: 10.1002/cctc.201402716 Finger, L. H., Guschlbauer, J., Harms, K., and Sundermeyer, J. (2016). N - heterocyclic olefin-carbon dioxide and -sulfur dioxide adducts: structures and interesting reactivity patterns. Chem. Eur. J. 22, 16292–16303. doi: 10.1002/chem.201602973 Gurau, G., Rodríguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., and Rogers, R. D. (2011). Demonstration of chemisorption of carbon dioxide FUNDING This research was funded by National Key Research and Development Program (2016YFA0602900), the National Natural Science Foundation of China (21672119). ACKNOWLEDGMENTS We thank the Ministry of Science and Technology of China (National Key Research and Development Program) and the National Natural Science Foundation of China. in 1,3-dialkylimidazolium acetate ionic liquids. Angew. Chem. Int. Ed. 50, 12024–12026. doi: 10.1002/anie.201105198 Gurkan, B. E., de la Fuente, J. C., Mindrup, E. M., Ficke, L. E., Goodrich, B. F., Price, E. A., et al. (2010). Equimolar CO2 absorption by anion-functionalized ionic liquids. J. Am. Chem. Soc. 132, 2116–2117. doi: 10.1021/ja909305t Hampe, E. M., and Rudkevich, D. M. (2003). Exploring reversible reactions between CO2 and amines. Tetrahedron 59, 9619–9625. doi: 10.1016/j.tet.2003.09.096 Huang, J. H., and Rüther, T. (2009). Why are ionic liquids attractive for CO2 absorption? An overview. Aust. J. Chem. 62, 298–308. doi: 10.1071/CH08559 Inesi, A., Mucciante, V., and Rossi, L. (1998). A convenient method for the synthesis of carbamate esters from amines and tetraethylammonium hydrogen carbonate. J. Org. Chem. 63, 1337–1338. doi: 10.1021/jo971695y Kayaki, Y., Yamamoto, M., and Ikariya, T. (2009). N-Heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angew. Chem. Int. Ed. 48, 4194–4197. doi: 10.1002/anie.200901399 Kelemen, Z., Peter-Szabo, B., Szekely, E., Holloczki, O., Firaha, D. S., Kirchner, B., et al. (2014). An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids: the importance of basicity. Chem. Eur. J. 20, 13002–13008. doi: 10.1002/chem.201402912 Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G. A., and Prakash, G. K. (2016a). Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J. Am. Chem. Soc. 138, 778–781. doi: 10.1021/jacs.5b12354 Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G. A., and Surya Prakash, G. K. (2016b). CO2 capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts. Green Chem. 18, 5831–5838. doi: 10.1039/c6gc01165a Lang, X. D., Yu, Y. C., Li, Z. M., and He, L. N. (2016). Protic ionic liquids-promoted efficient synthesis of quinazolines from 2-aminobenzonitriles and CO2 at ambient conditions. J. CO2 Util. 15, 115–122. doi: 10.1016/j.jcou.2016.03.002 Lee, J. B., Eom, T. H., Oh, B. S., Baek, J. I., Ryu, J., Jeon, W. S., et al. (2011). CO2 capture from flue gas using potassium-based dry regenerable sorbents. Energy Procedia. 4, 1494–1499. doi: 10.1016/j.egypro.2011.02.016 Li, L., Li, Y., Wen, X., Wang,F., Zhao, N., Xiao, F., et al. (2011). CO2 Capture over K2 CO3 /MgO/Al2 O3 dry sorbent in a fluidized bed. Energy Fuels 25, 3835–3842. doi: 10.1021/ef200499b Li, L., Wen, X., Fu, X., Wang, F., Zhao, N., Xiao, F., et al. (2010). MgO/Al2O3 sorbent for CO2 capture. Energy Fuels 24, 5773–5780. doi: 10.1021/ef100817f Li, Y. N., He, L. N., Lang, X. D., Liu, X. F., and Zhang, S. (2014). An integrated process of CO2 capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system. RSC Adv. 4, 49995–50002. doi: 10.1039/c4ra08740b Li, Y. N., He, L. N., Liu, A. H., Lang, X. D., Yang, Z. Z., Yu, B., et al. (2013). In situ hydrogenation of captured CO2 to formate with polyethyleneimine and Rh/monophosphine system. Green Chem. 15, 2825–2829. doi: 10.1039/C3GC41265B Liang, L., Liu, C., Jiang, F., Chen, Q., Zhang, L., Xue, H., et al. (2017). Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 8:1233. doi: 10.1038/s41467-017-01166-3 Frontiers in Chemistry | www.frontiersin.org 13 July 2019 | Volume 7 | Article 525

PDF Image | CO2 Capture and in situ Catalytic Transformation

co2-capture-and-situ-catalytic-transformation-013

PDF Search Title:

CO2 Capture and in situ Catalytic Transformation

Original File Name Searched:

fchem-07-00525.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP