logo

Green Chemistry Fabricate Small Band Gap Polymers

PDF Publication Title:

Green Chemistry Fabricate Small Band Gap Polymers ( green-chemistry-fabricate-small-band-gap-polymers )

Next Page View | Return to Search List

Text from PDF Page: 001

polymers Article From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers Shujahadeen B. Aziz 1,2,*, Omed Gh. Abdullah 1,2 ID , Ahang M. Hussein 1 and Hameed M. Ahmed 1 1 Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan Regional Government, Iraq; omed.abdullah@univsul.edu.iq (O.G.A.); ahang.hussein@univsul.edu.iq (A.M.H.); hameed.ahmad@univsul.edu.iq (H.M.A.) 2 Sulaymaniyah 46001, Kurdistan Regional Government, Iraq Development Center for Research and Training (DCRT), University of Human Development, Qrga Street, * Correspondence: shujaadeen78@yahoo.com or shujahadeenaziz@gmail.com; Tel.: +964-751-171-1435 Received: 11 October 2017; Accepted: 14 November 2017; Published: 16 November 2017 Abstract: Dye-doped polymer films of Poly(methyl methacrylate) PMMA have been prepared with the use of the conventional solution cast technique. Natural dye has been extracted from environmentally friendly material of green tea (GT) leaves. Obvious Fourier transform infrared (FTIR) spectra for the GT extract were observed, showing absorption bands at 3401 cm−1, 1628 cm−1, and 1029 cm−1, corresponding to O–H/N–H, C=O, and C–O groups, respectively. The shift and decrease in the intensity of the FTIR bands in the doped PMMA sample have been investigated to confirm the complex formation between the GT dye and PMMA polymer. Different types of electronic transition could be seen in the absorption spectra of the dye-doped samples. For the PMMA sample incorporated with 28 mL of GT dye, distinguishable intense peak around 670 nm appeared, which opens new frontiers in the green chemistry field that are particularly suitable for laser technology and optoelectronic applications. The main result of this study showed that the doping of the PMMA polymer with green tea dye exhibited a strong absorption peak around 670 nm in the visible range. The absorption edge was found to be shifted towards the lower photon energy for the doped samples. Optical dielectric loss and Tauc’s model were used to estimate the optical band gaps of the samples and to specify the transition types between the valence band (VB) and conduction band (CB), respectively. A small band gap of around 2.6 eV for the dye-doped PMMA films was observed. From the scientific and engineering viewpoints, this topic has been found to be very important and relevant. The amorphous nature of the doped samples was found and ascribed to the increase of Urbach energy. The Urbach energy has been correlated to the analysis of X-ray diffraction (XRD) to display the structure-properties relationships. Keywords: dye doped polymer; extract GT solution; FTIR study; band gap analysis; Urbach energy; XRD study 1. Introduction Polymer materials are broadly used in photonic device fabrication. Dye-doped polymers have grown to be very popular for their diverse advantages. Moreover, they can be used in linear and nonlinear photonic devices [1]. Recent studies reveal that lasers created out of such dye-doped polymers have several applications in sophisticated nanoscale lasers, optical telecommunication devices, and novel chip-integrated photonic biosensors [2]. The dye-doped polymers are also known Polymers 2017, 9, 626; doi:10.3390/polym9110626 www.mdpi.com/journal/polymers

PDF Image | Green Chemistry Fabricate Small Band Gap Polymers

green-chemistry-fabricate-small-band-gap-polymers-001

PDF Search Title:

Green Chemistry Fabricate Small Band Gap Polymers

Original File Name Searched:

polymers-09-00626.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP