logo

Synthesis and Characterisation of ETS-10 Acetate-based Ionic

PDF Publication Title:

Synthesis and Characterisation of ETS-10 Acetate-based Ionic ( synthesis-and-characterisation-ets-10-acetate-based-ionic )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Membranes 2014, 4 297 before NaOH neutralisation treatment. The thicknesses of selected membranes were measured before and after the permeation measurement in order to check the validity of these values and the structural stability of the membranes upon permeation. The experimental density values of the membranes (ρm) were measured gravimetrically from the electronically measured weight of the circular film and the calculated volume. Thermo gravimetric analyses (TGA) were performed in a DTG 60H Shimadzu instrument (Japan) in air from 25 to 700 °C at a heating rate of 10 °C/min, in order to study the thermal stability of the resulting membranes. The decomposition temperature was calculated as the temperature at which 5% weight loss occurs. The gas solubility of the membranes was evaluated by CO2 and N2 adsorption measured gravimetrically at the same thermo balance mentioned above, which is equipped with a FC60A flowmeter (Shimadzu, Japan). The sorption experiments were conducted isothermally at 25 °C for 3 and 4 h, under CO2 and N2 flow, respectively and a gas pressure of 5 bar. DSC analyses were carried out in a DSC 822 apparatus from Mettler Toledo, belonging to the Universidad de Zaragoza (Zaragoza, Spain). The samples were heated at 10 °C/min from 100 to 300 °C, after 1 min at 100 °C, twice, to elucidate the glass transition in the second run. The mechanical resistance of the membranes was measured by the tensile strength and the elongation at break of 5–10 of 5 mm wide samples of the membrane materials in a Universal Testing Machine (Zwick/Roell, Ulm, Germany) with a head load up to 2.5 kN and 5 mm/min. IR spectra were recorded on a Perkin Elmer Spectrum 100 FTIR spectrometer (Concord, Canada) with a resolution of 4 cm−1 and 32 scans, at the Universidad de Málaga (Málaga, Spain). The solid samples were measured after dilution in KBr pellets. For the membrane samples, these were dried at 100 °C for at least 2 h and grinded for 5 min prior to pellet preparation. The IL sample was sandwiched drop wise into two thin pieces of glass and measured using an optical transmission cell. All windows used were planar and compatible with infrared wavelengths. Gas permeation was carried out with pure N2 and CO2 at room temperature in a constant volume system. Membranes were placed in the permeation cell, and tested for N2 first and then CO2. An average of 10 experimental runs were performed for each membrane composition. The experimental runs were left no more than 3 h in order to keep the membrane at constant operation conditions (relative humidity, pressure and driving force), and only the results obtained for the membranes that were still flexible when removed from the module were taken into account. In a typical run, gas was fed to permeate and feed compartments, which took a few minutes. Then, gas feed was closed and the vent valve was opened to empty the permeate compartment and generate the driving force across the membrane. Initial pressure was measured by a pressure transducer (Omega, Manchester, UK), and the pressure difference was monitored along the experimental run by a differential pressure transducer (Omega, Manchester, UK). The steady-state permeability (1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1) was calculated from the steady-state flux. Ideal selectivity α(CO2/N2) is defined as the ratio of the permeability values of the two gases, the faster gas permeability (CO2) divided by the slower gas permeability (N2), thus constituting an intrinsic property to compare different membrane materials.

PDF Image | Synthesis and Characterisation of ETS-10 Acetate-based Ionic

synthesis-and-characterisation-ets-10-acetate-based-ionic-011

PDF Search Title:

Synthesis and Characterisation of ETS-10 Acetate-based Ionic

Original File Name Searched:

membranes-04-00287.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP