CO2 Vapor Compression Systems

PDF Publication Title:

CO2 Vapor Compression Systems ( co2-vapor-compression-systems )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 052

170 M.-H. Kim et al. / Progress in Energy and Combustion Science 30 (2004) 119–174 [28] Pettersen J, Skaugen G. Operation of trans-critical CO2 vapour compression systems in vehicle air conditioning. IIR International Conference on New Applications of Natural Working Fluids in Refrigeration and Air Conditioning, Hanover, Germany; 1994. p. 495 – 505. [29] Inokuty H. Graphical method of finding compression pressure of CO2 refrigerating machine for maximum coefficient of performance. The Fifth International Congress of Refrigeration, Rome; 1928. p. 185–92. [30] Pettersen J. Process with high-pressure control. Kohlen- dioxid: Besonderheiten und Einsatzchancen als Ka ̈ltemittel, Statusbericht des DKV, No. 20, German Association of Refrigeration and Air Conditioning; 1998. p. 64–74. [31] Pettersen J. Experimental results of carbon dioxide in compression systems. ASHRAE/NIST Conference Refriger- ants for the 21st Century, Gaithersburg, MD; 1997. p. 27 – 37. [32] Lorentzen G. Revival of carbon dioxide as a refrigerant. Int J Refrig 1993;17(5):292–301. [33] Domanski P, Didion D, Doyle J. Evaluation of suction-line/ liquid-line heat exchange in the refrigeration cycle. Int J Refrig 1994;17(7):487–93. [34] Kim M-H. Performance evaluation of R-22 alternative mixtures in a heat pump with pure cross-flow condenser and counter-flow evaporator. Energy 2002;27(2):167–81. [35] Vakil H. Thermodynamics of heat exchange in refrigeration cycles with non-azeotropic mixtures. Part II. Suction line heat exchange and evaporative cooling of capillary. Proceed- ings of the International Congress of Refrigeration, Paris, France: IIR; 1983. p. 533–8. [36] Robinson D, Groll E. Efficiencies of transcritical CO2 cycles with and without an expansion turbine. Int J Refrig 1998; 21(7):577 – 89. [37] Boewe D, Yin J, Park Y, Bullard C, Hrnjak P. The role of suction line heat exchanger in transcritical R744 mobile A/C systems. SAE Paper No. 1999-01-0583; 1999. [38] Negishi M. Refrigeration air conditioner. Japan No. JP11094379; 1997. [39] Plank R. Arbeitsverfahren an Kompressionska ̈ltemaschinen, insbesondere fu ̈r Ka ̈ltetra ̈ger mit tiefer kritischer Temperatur. German Patent No. DE278095; 1912. [40] Ikoma M, Hasegawa H, Shintaku H. Refrigeration cycle device and its control method. Japan Patent No. JP2002022298; 2000. [41] Maurer T, Zinn T. Untersuchung von Entspannungsmaschi- nen mit mechanischer Leistungsauskopplung fu ̈r die trans- kritische CO2-Ka ̈ltemaschine. DKV-Tagungsbericht 26, Berlin; 1999. p. 264–77. [42] Heyl P, Quack H. Transcritical CO2 cycle with expander– compressor. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 471–80. [43] Stosic N, Smith I, Kovacevic A. A twin screw combined compressor and expander for CO2 refrigeration systems. In: Soedel W, editor. Proceedings of the International Compres- sor Engineering Conference at Purdue, West Lafayette, IN. Paper No. C21-2; 2002. p. 703 – 10. [44] Huff H-J, Lindsay D, Radermacher R. Positive displacement compressor and expander simulation. In: Soedel W, editor. Proceedings of the International Compressor Engineering Conference at Purdue, West Lafayette, IN. Paper No. C9-2; 2002. p. 209 – 16. [45] Baek J, Groll E, Lawless P. Development of a piston-cylinder expansion device for the transcritical carbon dioxide cycle. In: Groll EA, editor. Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, Paper No. R11-8. 2002. [46] Heyl P, Quack H. Free piston expander – compressor for CO2: design, applications and results. The 20th International Congress of Refrigeration, Sydney, Australia; 1999. [47] Nickl J, Will G, Kraus W, Quack H. Design considerations for a second generation CO2-expander. In: Xu Z, Fan J, Huang W, editors. The Fifth IIR-Gustav Lorentzen Con- ference on Natural Working Fluids. Guangzhou, China. 2002. p. 189–96. [48] Hess U, Tiedemann T. Klimaanlage fu ̈r Kraftfahrzeuge und Verfahren zum Betreiben einer Klimaanlage fu ̈r Kraftfahr- zeuge. German Patent No. DE19959439, 1999. [49] Adachi Y, Kazuo K, Masahiro I. Vapor compression type refrigerator. Japan Patent No. JP2000241033; 1999. [50] Heidelck R, Kruse H. Expansion machines for carbon dioxide based on modified reciprocating machines. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 455–62. [51] Hesse U. Klimaanlage, insbesondere fu ̈r Kraftfahrzeuge und Verfahren zum Betreiben einer Klimaanlage, insbesondere fu ̈r Kraftfahrzeuge. German Patent No. DE10013191; 2000. [52] Plank R. Ueber den Ideal-Prozess von Ka ̈ltemaschinen bei Verbund-Kompression. Zeitschrift fu ̈r die gesamte Ka ̈lte- Industrie 1928;35:17–24. [53] Thiessen H. Verfahren zum Betrieb einer Kompressionska ̈l- teanlage. German Patent No. DE19522884; 1995. [54] Ozaki Y, Sakajo Y, Sakakibara H, Uchida, K. Vapor compression type refrigerating system. European Patent No. EP0837291; 1997. [55] Shunichi F, Hiroshi K. Refrigerating cycle. European Patent No. EP0976991; 1999. [56] Okaza N, Nishiwaki F, Fukunara S, Matsuo M, Yoshida Y. Refrigeration cycle. Japan Patent No. JP2001133058; 1999. [57] Pettersen J. Cycle options for CO2. Workshop on Vapor Compression with the Critical Point in Mind, College Park, MD; 2000. [58] Huff H-J, Hwang Y, Radermacher R. Options for a two-stage transcritical carbon dioxide cycle. In: Xu Z, Fan J, Huang W, editors. The Fifth IIR-Gustav Lorentzen Conference on Natural Working Fluids, Guangzhou, China. 2002. p. 143–9. [59] Inagaki M, Sasaya H, Ozakli Y. Pointing to the future: two- stage CO2 compression. Heat transfer issues in natural refrigerants, International Institute of Refrigeration; 1997. p. 131–40. [60] Olson D. Heat transfer of supercritical carbon dioxide flowing in a cooled horizontal tube. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 251 – 8. [61] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Engng 1976;16(2): 359 – 68. [62] Krasnoshchekov E, Protopopov V. A generalized relation- ship for calculation of heat transfer to carbon dioxide at

PDF Image | CO2 Vapor Compression Systems

PDF Search Title:

CO2 Vapor Compression Systems

Original File Name Searched:

co2-vapor-compression-systems.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)