logo

CO2 Vapor Compression Systems

PDF Publication Title:

CO2 Vapor Compression Systems ( co2-vapor-compression-systems )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 053

M.-H. Kim et al. / Progress in Energy and Combustion Science 30 (2004) 119–174 171 supercritical pressure. Telofizika Vysokikh Temperatur 1972;9(6):1314. [63] Pitla S, Robinson D, Zingerli A, Groll E, Ramadhyani S. Heat transfer and pressure drop characteristics during in-tube gas cooling of supercritical carbon dioxide. ASHRAE 913- RP, report HL 2000-10 No. 3613-1, Herrick Laboratories, Purdue University; 2000. [64] Pitla S, Robinson D, Groll E, Ramadhyani S. Heat transfer from supercritical carbon dioxide in tube flow: a critical review. Int J HVAC&R Res 1998;4(3):281 – 301. [65] Pitla S, Groll E, Ramadhyani S. Convective heat transfer from in-tube flow of turbulent supercritical carbon dioxide. Part 1. Numerical analysis. Int J HVAC&R Res 2001;7(4): 345 – 66. [66] Pitla S, Groll E, Ramadhyani S. Convective heat transfer from in-tube cooling of turbulent supercritical carbon dioxide. Part 2. Experimental data and numerical predictions. Int J HVAC&R Res 2001;7(4):367 – 82. [67] Pettersen J, Rieberer R, Leister A. Heat transfer and pressure drop characteristics of supercritical carbon dioxide in microchannel tubes under cooling. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 99 – 106. [68] Sun Z, Groll E. CO2 flow boiling in horizontal tubes. Internal report No. HL-2001-8, Ray W. Herrick Laboratories, Purdue University; 2000. [69] Hihara E, Tanaka S. Boiling heat transfer of carbon dioxide in horizontal tubes. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Work- ing Fluids, West Lafayette, IN. 2000. p. 279 – 84. [70] Lombardi C, Carsana C. A dimensionless pressure drop correlation for two-phase mixtures flowing upflow in vertical ducts covering wide parameter range. Heat Technol 1992; 10(1-2):125 – 41. [71] Kattan N, Thome J, Favrat D. Flow boiling in horizontal tubes. Part 1. Development of a diabatic two-phase flow pattern map. J Heat Transfer 1998;120:140 – 7. [72] Weisman J, Duncan D, Gibson J, Crawford T. Effect of fluid properties and pipe diameter on two-phase flow pattern in horizontal lines. Int J Multiphase Flow 1979;5:437 – 62. [73] Groll E, Cohen R. Review of recent research on the use of CO2 for air conditioning and refrigeration. CLIMA 2000, The Seventh Rehva World Congress, Naples, Italy; 2000. [74] Su ̈ss J, Kruse H. Einfluss von Leckage auf die Effizienz von Verdichtern fu ̈ r Kohlendioxid. Ki Luft- und Ka ̈ ltetechnik 1997;173 – 6. [75] Fagerli B. CO2 compressor development. IEA/IIR Workshop on CO2 Technologies in Refrigeration, Heat Pump and Air Conditioning Systems, Trondheim, Norway 1997;13 – 14. [76] Pettersen J, Hafner A, Skaugen G, Rekstad H. Development of compact heat exchangers for CO2 air-conditioning systems. Int J Refrig 1998;21(3):180 – 93. [77] Pettersen J, Bra ̊ na ̊ s M, Hafner A. Some safety aspects of CO2 vapor compression systems. IEA Annex 27 Workshop Proceedings: Selected Issues on CO2 as Working Fluid in Compression Systems, Trondheim, Norway 2000; p. 61 – 75. [78] NIOSH. US National Institute for Occupational Safety and Health; 1996, http://www.cdc.gov/niosh/idlh/124389.html. [79] Berghmans J, Duprez H. Safety aspects of CO2 heat pumps. IEA/IZWe.V./IIR Workshop on CO2 Technology in Refrigeration, Heat Pump and Air Conditioning Systems, Mainz, Germany; 1999. [80] Amin J, Dienhart B, Wertenbach J. Safety aspects of an A/C system with carbon dioxide as refrigerant. The SAE Automotive Alternate Refrigerants Systems Symposium, Scottsdale, AZ; 1999. [81] Pettersen J. Comparison of explosion energies in residential air-conditioning systems based on HCFC-22 and CO2. Proceedings of the 20th International Congress of Refriger- ation (IIR), Sydney, Australia; 1999. [82] Pettersen J. Refrigerant R-744 fundamentals. VDA Alternate Refrigerant Winter Meeting, Saalfelden, Austria; 2002. [83] Pettersen J, Hakenjos J. Boiling liquid expanding vapor explosions (BLEVE) in CO2 vessels: initial experiments. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 216 – 24. [84] Pettersen J. Experimental study on boiling liquid expansion in a CO2 vessel. In: Xu Z, Fan J, Huang W, editors. The Fifth IIR-Gustav Lorentzen Conference on Natural Working Fluids. Guangzhou, China. 2002. p. 92 – 9. [85] Kim-E M, Reid R. The rapid depressurization of hot, high pressure liquids or supercritical fluids. Chemical engineering at supercritical fluid conditions, Michigan: Ann Arbor Science; 1983. [86] Clayton W, Griffin M. Catastrophic failure of a liquid carbon dioxide storage vessel. Process Safety Prog 1994;13(4): 202–9. [87] Vo ̈ ro ̈ s M, Honti G. Explosion of a liquid CO2 storage vessel in a carbon dioxide plant. The First International Loss Prevention Symposium, The Hague/Delft, the Netherlands; 1974. p. 337 – 46. [88] Venart J, Ramier S. Boiling liquid expanding vapor explosions (BLEVE): the influence of dynamic re-pressur- ization and two-phase discharge. PVP-vol. 377-2, Compu- tational technologies for fluid/thermal/structural/chemical systems with industrial application, vol. II.; 1998. p. 249 – 54. [89] Graz M, Stenzel A. Overview of the proposed J639 working draft about safety and containment of refrigerant for mechanical vapor compression systems used for mobile air conditioning systems. VDA Alternate Refrigerant Winter Meeting, Saalfelden, Austria; 2002. [90] Parsch W. Status of compressor development for R-744 systems. VDA Alternative Refrigerant Winter Meeting, Saalfelden, Austria; 2002. [91] Bullard C, Hrnjak P. Advanced technologies for auto a/c components. The Seventh IEA Conference on Heat Pumping Technologies, Beijing, China; 2002. p. 112 – 24. [92] Fagerli B. On the feasibility of compressing CO2 as working fluid in hermetic reciprocating compressors. Dr Ing Thesis. Department of Refrigeration and Air Conditioning, Norwe- gian University of Science and Technology, Norway; 1997. [93] Su ̈ss J, Kruse H. Efficiency of the indicated process of CO2 compressors. Int J Refrig 1998;21(3):194 – 205. [94] Fagerli B. On the feasibility of compressing CO2 as working fluid in hermetic reciprocating compressors. Dr Ing Thesis. Department of Refrigeration and Air Conditioning, Norwe- gian University of Science and Technology, Norway; 1997. [95] Neksa ̊P,RekstadH,ZakeriG,SchiefloeP,SvenssonM. Commercial heat pumps for water heating and heat recovery. IEA/IZWe.V./IIR Workshop on CO2 Technology in

PDF Image | CO2 Vapor Compression Systems

co2-vapor-compression-systems-053

PDF Search Title:

CO2 Vapor Compression Systems

Original File Name Searched:

co2-vapor-compression-systems.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP