CO2 Vapor Compression Systems

PDF Publication Title:

CO2 Vapor Compression Systems ( co2-vapor-compression-systems )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 054

172 M.-H. Kim et al. / Progress in Energy and Combustion Science 30 (2004) 119–174 Refrigeration, Heat Pump and Air Conditioning Systems, Mainz, Germany; 1999. [96] Neksa ̊ P, Dorin F, Rekstad M, Bredesen A. Development of two-stage semi-hermetic CO2-compressors. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 355 – 62. [97] Suzai T, Sato A, Tadano M, Komatsubara T, Ebara T, Oda A. Development of a carbon dioxide compressor for refriger- ators and air conditioners. Conference of the Japan Society of Refrigerating and Air Conditioning Engineers, Tokyo; 1999. [98] Tadano M, Ebara T, Oda A, Susai T, Kikuo T, Izaki H, Komatsubara T. Development of the CO2 hermetic com- pressor. In: Groll EA, Robinson DM, editors. The Fourth IIR- Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 323 – 30. [99] Fukuta M, Radermacher R, Lindsay D, Yanagisawa T. Performance of vane compressor for CO2 cycle. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 339 – 46. [100] Hiwada T, Hokotani K. Carbon dioxide refrigerating machine. Japan Patent No. JP2001065888; 1999. [101] Ohakawa T, Kumakura E, Saitani K, Higuchi M, Taniwa H, Ozawa H. Development of hermetic swing compressors for CO2 refrigerant. In: Soedel W, editor. Proceedings of the International compressor engineering conference at Purdue, West Lafayette, IN, Paper No. C25-1. 2002. p. 841 – 52. [102] Fagerli B. Theoretical analysis of compressing CO2 in scroll compressors. Proceedings of the Third IIR-Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway; 1998. p. 249 – 59. [103] Hasegawa H, Ikoma M, Nishawaki F, Shintaku H, Yakumaru Y. Experimental and theoretical study of hermetic CO2 scroll compressor. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 347 – 53. [104] Hihara E. R&D on heat pumps with natural working fluids in Japan. The Seventh International Energy Agency Conference on Heat Pump Technologies, Beijing, China; 2002. p. 272 – 9. [105] Baumann H, Conzett M. Small oil free piston type compressor for CO2. In: Soedel W, editor. Proceedings of International Compressor Engineering Conference at Pur- due, West Lafayette, IN, Paper No. C25-3. 2002. p. 861 – 8. [106] Su ̈ ss J. Kompressoren und Expansionsorgane fu ̈ r das Ka ̈ltemittel CO2. Seminar Stand und Anwendung natu ̈rlicher Ka ̈ltemittel, Mainz, Germany; 2002. [107] Sasaki M, Koyatsu M, Yoshikawa C, Fujima K, Mizuno T, Kawai S, Hashizume T. The effectiveness of a refrigeration system using CO2 as a working fluid in the trans-critical region. ASHRAE Trans 2002;108(1):413 – 8. [108] Pettersen J, Neksa ̊ P. CO2 refrigeration, air conditioning and heat pump technology development in Europe. Mag Soc Air- Conditioning Refrig Engrs Korea 2002;31(7):53 – 64. [109] Bullard C, Yin M, Hrnjak P. Compact counterflow gas cooler for R-744. ASHRAE Trans 2002;108(1):487 – 91. [110] Yin J, Bullard C, Hrnjak P. R-7.4.4. gas cooler model development and validation. Int J Refrig 2001;24:652 – 9. [111] Fang X, Bullard C, Hrnjak P. Heat transfer and pressure drop of gas coolers. ASHRAE Trans 2001;107(1):255 – 66. [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] Fang X, Bullard C, Hrnjak P. Modeling and analysis of gas coolers. ASHRAE Trans 2001;107(1):4 – 13. Yin J, Bullard C, Hrnjak P. Single-phase pressure drop measurements in a microchannel heat exchanger. Heat Transfer Engng 2002;23(4):3 – 12. Yin J, Bullard C, Hrnjak P. Design strategies for R744 gas coolers. Proceedings of the International Refrigeration Conference at Purdue, West Lafayette, IN; 2002. p. 315 – 22. Kim M-H, Lee S, Mehendale S, Webb R. Microchannel heat exchanger design for evaporator and condenser applications. Adv Heat Transfer 2003;37:297 – 429. Kim M-H, Bullard C. Development of a microchannel evaporator model for a carbon dioxide air conditioning system. Energy 2001;26(10):931 – 48. Zhao Y, Molki M, Ohadi M, Dessiatoun S. Flow boiling of CO2 in microchannels. ASHRAE Trans 2000;106(1): 437 – 45. Kim M-H, Youn B, Bullard C. Effect of inclination on air side performance of a brazed aluminum heat exchanger under dry and wet conditions. Int J Heat Mass Transfer 2001;44: 4613 – 23. Kim M-H, Bullard C. Air-side thermal hydraulic perform- ance of multi-louvered aluminum heat exchangers. Int J Refrig 2002;25(3):390 – 400. Boewe D, Bullard C, Yin J, Hrnjak P. Contribution of internal heat exchanger to transcritical R744 cycle perform- ance. Int J HVAC&R Res 2001;7(2):155 – 68. Randles S, Pasquin S, Gibb P. A critical assessment of synthetic lubricant technologies for alternative refrigerants. The 10th European Conference on Technological Inno- vations in Air-Conditioning and Refrigeration Industry, Milan; 2003. Kawaguchi Y, Takesue M, Kaneko M, Tazaki T. Perform- ance study of refrigerating oils with CO2. The SAE Automotive Alternate Refrigerants Systems Symposium, Scottsdale, AZ; 2000. Li H, Rajewski T. Experimental study of lubricant candidates for the CO2 refrigeration system. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 409 – 16. Seeton C, Fahl J, Henderson D. Solubility, viscosity, boundary lubrication and miscibility of CO2 and synthetic lubricants. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 417–24. Heide R, Fahl J. Mischbarkeit von Schmiero ̈len mit Kohlendioxid. KI Luft- und Ka ̈ltetechnik 2001;No. 10: 456 – 70. Fahl J, Bruns B, Langenberg E, Po ̈tke W. Thermoanalyse synthetischer Schmiero ̈le mit DSC und TGA. KI Luft- und Ka ̈ltetechnik 2001;No. 7:309–13. Leisenheimer B, Fritz T. Interaction between CO2 and elastomers with respect to permeation and explosive decompression. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Work- ing Fluids, West Lafayette, IN. 2000. p. 201 – 8. Jain V, Haramoto C, Shilad I, Pfister J. Components for CO2 A/C systems. The SAE Automotive Alternate Refrigerants Systems Symposium, Scottsdale, AZ; 2000.

PDF Image | CO2 Vapor Compression Systems

PDF Search Title:

CO2 Vapor Compression Systems

Original File Name Searched:

co2-vapor-compression-systems.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)