logo

CO2 Vapor Compression Systems

PDF Publication Title:

CO2 Vapor Compression Systems ( co2-vapor-compression-systems )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 055

[129] [130] [131] [132] [133] [134] [135] [136] Bhatti M. A critical look at R-744 and R-134a mobile air conditioning systems. SAE Paper No. 970527; 1997. Fischer S, Sand J. Total Environmental Impact (TEWI) calculations for alternative automotive air-conditioning systems. SAE Paper No. 970526; 1997. Pettersen J, Hafner A. Energetischer Wirkungsgrad und TEWI von CO2-Fahrzeug-Klimaanlagen. Seminar: Fahr- zeugklimatisierung mit Naturlichen Kaetlemitteln, Karls- ruhe, C.F. Mueller Verlag; March 8, 1997. Gentner H. Passenger car air conditioning using carbon dioxide as refrigerant. Proceedings of the Third IIR-Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway; 1998. p. 303 – 13. Boewe D, McEnaney R, Park Y, Yin J, Bullard C, Hrnjak P. Comparative experimental study of subcritical R134a and transcritical R744 refrigeration systems for mobile appli- cations. ACRC report CR-17. University of Illinois at Urbana-Champaign, Illinois; 1999. Beaver A, Yin J, Bullard C. An experimental investigation of transcritical carbon dioxide systems for residential air conditioning. ACRC report CR-18. University of Illinois at Urbana-Champaign, Illinois; 1999. Yin J, Park Y, Boewe D, McEnaney R, Beaver A, Bullard C, Hrnjak P. Experimental and model comparison of transcri- tical CO2 versus R134a and R410 system performance. Proceedings of the Third IIR-Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway; 1998. p. 331 – 40. McEnaney R, Boewe D, Yin J, Park Y, Bullard C, Hrnjak P. Experimental comparison of mobile A/C systems when operated with transcritical CO2 versus conventional R134a. Proceedings of the Third IIR-Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway; 1998. p. 145 – 50. [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] air-conditioning and heat pumping. MS Thesis. University of Illinois at Urbana-Champaign, Illinois; 2002. Itoh M, Kogure H, Yoshinaga S, Hoshino R, Wakabayashi N, Kudoh M, Kusumoto H. Study on parallel-flow-type heat exchangers for residential heat pump systems. Proceedings of the JAR Annual Conference; 1996. p. 73 – 6. Song S, Bullard C, Hrnjak P. Frost deposition and refrigerant distribution in microchannel heat exchangers. ASHRAE Trans 2002;108(2):944 – 53. Hammer H, Wertenbach J. Carbon dioxide (R-744) as supplementary heating device. The SAE Automotive Alter- nate Refrigerants Systems Symposium, Scottsdale, AZ; 2000. PettersenJ,AarlienR,Neksa ̊P,SkaugenG,AflektK.A comparative evaluation of CO2 and HCFC-22 residential air-conditioning systems in a Japanese climate. IEA/IIR Workshop on CO2 Technologies in Refrigeration, Heat Pump and Air Conditioning Systems, Trondheim, Norway; 1997. ARI, Standard 210/240, Standard for air-conditioning and air-source heat pump. Arlington, VA: Air-conditioning and Refrigeration Institute; 1994. Beaver A, Hrnjak P, Yin J, Bullard C. Effects of distribution in headers of microchannel evaporators on transcritical CO2 heat pump performance. In: Garimella S, Von Spakovsky M, Somasundaram S, editors. The ASME advanced energy systems division, AES-vol. 40. New York: ASME; 2000. p. 55 – 64. Sand J, Fischer S, Baxter V. Comparison of TEWI for fluorocarbon alternative refrigerants and technologies in residential heat pumps and air-conditionings. ASHRAE Trans 1999;105(1):1209 – 18. Richter M, Song S, Yin J, Kim M-H, Bullard C, Hrnjak P. Experimental results of transcritical CO2 heat pump for residential application. Energy 2003;28:1005 – 19. Richter M, Bullard C, Hrnjak P. Effect of comfort constraints on cycle efficiencies. In: Hernandez-Guerrero A, editor. The ASME advanced energy systems division, AES-vol. 41. New York: ASME; 2001. p. 275 – 86. Neksa ̊ P, Zakeri G, Aarlien R, Jakobsen A. Carbon dioxide as working fluid in air conditioning and heat pump systems. The Earth Technologies Forum, Washington, DC; 1998. Hwang Y, Radermacher R. Theoretical evaluation of carbon dioxide refrigeration cycle. Int J HVAC&R Res 1998;4(3): 245 – 63. Hwang Y, Radermacher R. Experimental investigation of the CO2 refrigeration cycle. ASHRAE Trans 1999;105(1): 1219 – 27. Rieberer R, Halozan H. CO2 heat pumps in controlled ventilation systems. Proceedings of the Third IIR-Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway; 1998. p. 212 – 22. Rieberer R, Kasper G, Halozan H. CO2: a chance for once- through heat pump heaters. CO2 technology in refrigeration, heat pumps and air conditioning systems, Trondheim, Norway; 1997. Schiefloe P, Neksa ̊ P. CO2 varmepumpe for bygningsopp- varming. forprosjekt (Project report, in Norwegian). Trond- heim, Norway: SINTEF Energy Research; 1999. Enkemann T, Kruse H, Oostendorp P. CO2 as a heat pump working fluid for retrofitting hydronic heating systems in M.-H. Kim et al. / Progress in Energy and Combustion Science 30 (2004) 119–174 173 [137] McEnaney R, Park Y, Yin J, Bullard C, Hrnjak P. Performance of the prototype of a transcritical R744 mobile A/C system. SAE Paper No. 99PC-6-7; 1999. McEnaney R, Hrnjak P. Control strategies for transcritical R744 systems. SAE Paper No. 2000-01-1272; 2000. McEnaney R, Yin J, Bullard C, Hrnjak P. An investigation of control-related issues in transcritical R744 and subcritical R134a mobile air conditioning systems. ACRC report CR-19. University of Illinois at Urbana-Champaign, Illinois; 1999. Park Y, Yin J, Bullard C, Hrnjak P. Experimental and model analysis of control and operating parameters of transcritical CO2 mobile A/C system. Proceedings of VTMS-4 Con- ference, London, England; 1999. p. 163 – 70. [138] [139] [140] [141] [142] [143] [144] Hrnjak P. Some lessons learned from SAE AR CRP. The SAE Automotive Alternative Refrigerant Systems Sym- posium, Scottsdale, AZ; 2002. Giannavola M, Murphy R, Yin J, Kim M-H, Bullard C, Hrnjak P. Experimental investigations of an automotive heat pump prototype for military, SUV and compact cars. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 115 – 22. Hafner A. Experimental study on heat pump operation of prototype CO2 mobile air conditioning system. In: Groll EA, Robinson DM, editors. The Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids, West Lafayette, IN. 2000. p. 183 – 90. Giannavola M. Experimental study of system performance improvements in transcritical R744 systems for mobile

PDF Image | CO2 Vapor Compression Systems

co2-vapor-compression-systems-055

PDF Search Title:

CO2 Vapor Compression Systems

Original File Name Searched:

co2-vapor-compression-systems.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP