Comparative analysis of two subcritical heat pump boosters using subcooling

PDF Publication Title:

Comparative analysis of two subcritical heat pump boosters using subcooling ( comparative-analysis-two-subcritical-heat-pump-boosters-usin )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

M Pitarch-Mocholi, E Navarro-Peris, J Gonzalvez-Macia, JM Corberan / 12th IEA Heat Pump Conference (2017) O.1.9.3 given support. Part of the work presented was carried by Miquel Pitarch-Mocholí with the financial support of the Phd scholarship from the Universitat Politècnica de València. References [1] European Directive 2009/28/EC of The European Parliament and of The Council. eur-lex.europa.eu [2] Sarbu I. A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration, air-conditioning and heat pump systems. Int. J. Refrigeration 46 (2014) 123-141. [3] ECO-CUTE project, http://www.r744.com/assets/link/enEX_ecocute.pdf, (Last acceded: 05-02-2015) [4] Rieberer R, Kasper G, Halozan J. CO2-a Chance for once through Heat Pump Heaters, CO2 Technology in Refrigeration, Heat Pumps and Air Conditioning Systems. IEA Heat Pump Centre, Trondheim, Norway, 1997. [5] Nekså P, Rekstad H, Zakeri GR, Schiefloe PA. CO2-heat pump water heater: characteristics, system design and experimental results. Int. J. Refrigeration 21(3) (1998) 172-179. [6] Nekså P. CO2 heat pump systems. Int. J. Refrigeration 25(4) (2002) 421-427. [7] Cecchinato L, Corradi M, Fornasieri E, Zamboni L. Carbon dioxide as refrigerant for tap water heat pumps: a comparison with the traditional solution. Int. J. Refrigeration 28(8) (2005) 1250-1258. [8] Pitarch M, Navarro-Peris E, Gonzálvez-Maciá J, Montagud C, Corberan JM. Influence of Water Lift Temperature in Transcritical and Subcritical Refrigerants. In: VII Congreso Ibérico de Ciencias y Técnicas del Frío, Tarragona, Spain, 2014. [9] Kauf F. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. International Journal of Thermal Sciences 38(4) (1999), 325-330. [10] Chen Y, Gu J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. Int. J. Refrigeration 28(8) (2005), 1238-1249. [11] Sarkar J, Bhattacharyya S, Ram Gopal M. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. Int. J. Refrigeration 27 (2004) 830-838. [12] Quantum: http://quantumenergy.com.au/products/solar-heat-pumps-ac6-energy-efficient-hot-water- systems/ . (Last accessed: 30-05-2016) [13] Justo Alonso M, Stene J. IEA Heat Pump Programme Annex 32. Umbrella Report, System Solutions, Design Guidelines. Prototype System and Field Testing, 2010. [14] Fernando P, Palm B, Lundqvist P, Granryd E. Propane heat pump with low refrigerant charge: design and laboratory tests. Int. J. Refrigeration 27 (2004) 761-773. [15] Corberán JM, Martínez-Galván I, Gonzálvez-Maciá J. Charge optimization study of a reversible water-to- water propane heat pump. Int. J. Refrigeration 31 (2008) 716–726. [16] Corberán JM, Martínez-Galván I, Martínez-Ballester S, Gonzálvez-Maciá J, Royo-Pastor R. Influence of the source and sink temperatures on the optimal refrigerant charge of a water-to-water heat pump. Int. J. Refrigeration 34 (2011) 881-892. [17] Choi JM, Kim YC. Influence of the expansion device on the performance of a heat pump using R407C under a range of charging conditions. Int. J. Refrigeration 27 (2004) 378-384. [18] Redón A, Navarro-Peris E, Pitarch M, Gonzálvez-Macia J, Corberán JM. Analysis and optimization of subcritical two-stage vapor injection heat pump systems. Applied Energy, 124 (2014) 231-240. [19] Pitarch M, Navarro-Peris E, Gonzálvez-Maciá J, Corberan JM. Experimental study of a subcritical heat pump booster for sanitary hot water production using a subcooler in order to enhance the efficiency of the system with a natural refrigerant (R290). Int. J. Refrigeration, (In press) Doi: 10.1016/j.ijrefrig.2016.08.017. [20] Gong G, Zeng W, Wang L, Wu C. A new heat recovery technique for air-conditioning/heat-pump system. Applied Thermal Engineering 28 (2008) 2360-2370. [21] Pitarch M, Navarro-Peris E, Gonzálvez-Maciá J, Corberan JM. Experimental study of a propane heat pump with high subcooling in the condenser for sanitary hot water production. Applied Thermal Engineering, (under revision) [22] IMST-ART: Simulation tool to assist the selection, design and optimization of refrigerator (v3.70), http://www.imstart.com. (Last accessed: 07-07-2016) [23] Corberán JM, Gonzálvez J, Montes P, Blasco R. ‘ART’ A Computer Code to Assist the Design of Refrigeration and A/C Equipment. In: International Refrigeration and Air Conditioning Conference (Purdue University). Paper 570, 2002. 12

PDF Image | Comparative analysis of two subcritical heat pump boosters using subcooling

PDF Search Title:

Comparative analysis of two subcritical heat pump boosters using subcooling

Original File Name Searched:

subcritical-heat-pump-boosters.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)