Comparison of R744 and R410A

PDF Publication Title:

Comparison of R744 and R410A ( comparison-r744-and-r410a )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 086

h_2phase=10000 "Refrigerant side heat transfer coefficienct, [W/m^2 K]" h_ev_air=90*(m_dot_air/m_dot_air_max)^0.8 "Air side heat transfer coefficient, [W/m^2 K]" alpha=7.8 "Fin to refrigerant area ratio" T_dp_in = dewpoint(airh2o, P=P_atm, T=Teai, R=RH) T_dp_out=dewpoint(airh2o, P=P_atm, T=Teao, R=RH_o) "First calculate air outlet temperature and humidity for various mass flow rates at given SHR" cfmperton = m_dot_air*volume(air,T=Teai,P=P_atm)*convert(m^3/s,ft^3/min)/((q_s+q_lat)*convert(kW,ton)) q_s + q_lat = Q_supplied SHR= 1/(1+q_lat/q_s) q_s = m_dot_air*specheat(air, T=Teai)*(Teai - Teao) q_lat = m_dot_air*(omega_i - omega_o)*h_fg h_fg = (enthalpy(water, x=1,T=Teao) - enthalpy(water,x=0,T=Teao)) c_pm = 1.02 omega_i = humrat(airH2O,T=Teai, R=RH, P=P_atm) omega_o = humrat(airH2O,T=Teao, R=RH_o, P=P_atm) "Results showed that outlet air conditions are essentially independent of air flow rate" "Now calculate relation between outlet air temperature and humidity, consistent with heat/mass transfer relation" SHR = 1/(1+(h_fg*LMwD*((h_2phase+alpha*h_ev_air)/1000))/(c_pm*Le^(2/3)*(h_2phase/1000)*LMTD_a)) LMTD_a =(L_t - S_t)/ln(L_t/S_t) L_t = Teai - T_surf_ev S_t = Teao - T_surf_ev LMwD =(L_w- S_w)/ln(L_w/S_w) L_w = omega_i - omega_s S_w = omega_o - omega_s omega_s = humrat(airH2O,T=T_surf_ev, R=1, P=P_atm) DELTAT_approach = DELTAT_air + DELTAT_ref T_surf_ev = Tero + DELTAT_ref Teao = T_surf_ev + DELTAT_air h_in=Enthalpy(airH2O, P=P_atm, T=Teai, W=omega_i) h_out=Enthalpy(airH2O, P=P_atm, T=Teao, W=omega_o) DELTAT_ref = Q_supplied/(h_2phase/1000*A_ev_logmean/alpha) A_ev_logmean=Q_supplied/(h_ev_air/1000*((h_2phase/1000*LMTD_a)/(h_2phase/1000+alpha*h_e v_air/1000)+(LMwD*h_fg)/(c_pm*Le^(2/3)))) "Evaporator air-side area" E.4 Results In Figure E.2 the required evaporating temperature is plotted as a function of SHR for two inlet conditions, based on the following assumptions (typical for R744): href: hair,max: α: Le: 10,000 W/m2 K 90 W/m2 K 7.8 1 75

PDF Image | Comparison of R744 and R410A

PDF Search Title:

Comparison of R744 and R410A

Original File Name Searched:

CR039.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)