logo

Dynamic Modelling and Validation of an Air-to-Water Reversible R744

PDF Publication Title:

Dynamic Modelling and Validation of an Air-to-Water Reversible R744 ( dynamic-modelling-and-validation-an-air-to-water-reversible- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 025

Energies 2021, 14, 8238 25 of 25 15. Minetto, S.; Marinetti, S.; Saglia, P.; Masson, N.; Rossetti, A. Non-technological barriers to the diffusion of energy-efficient HVAC&R solutions in the food retail sector. Int. J. Refrig. 2018, 86, 422–434. 16. Bryan, P. Rasmussen Dynamic modeling for vapor compression systems—Part I: Literature review. HVAC R Res. 2012, 18, 934–955. 17. Rasmussen, B.P. Dynamic Modelling and Advanced Control of Air Conditioning and Refrigeration Systems. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2005. 18. Shi, R.F.; Fu, D.G.; Feng, Y.S.; Fan, J.Q.; Mijanovic, S.; Radcliff, T. Dynamic modelling of CO2 Supermarket Refrigeration System. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 12–15 July 2010. Paper 1127. 19. Gräber, M.; Kosowski, K.; Richter, C.; Tegethoff, W. Modelling of heat pumps with an object-oriented model library for thermodynamic systems. Math. Comput. Model. Dyn. Syst. 2010, 16, 195–209. [CrossRef] 20. Zheng, L.; Deng, J.; He, Y.; Jiang, P. Dynamic model of a transcritical CO2 ejector expansion refrigeration system. Int. J. Refrig. 2015, 60, 247–260. [CrossRef] 21. Barta, R.B.; Ziviani, D.; Hugenroth, J.; Groll, E.A. Dynamic Modeling and Control Strategy of a Transcritical CO2 Cycle for a Multi-Temperature Refrigerated Container System for Military Applications. In Proceedings of the 25th IIR International Congress of Refrigeration, Montreal, QC, Canada, 24–30 August 2019. 22. Artuso, P.; Marinetti, S.; Minetto, S.; Del Col, D.; Rossetti, A. Modelling the performance of a new cooling unit for refrigerated transport using carbon dioxide as the refrigerant. Int. J. Refrig. 2020, 115, 158–171. 23. Benedict, M.; Webb, G.B.; Rubin, L.C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures: I. Methane, ethane, propane, and n-Butane. J. Chem. Phys. 1940, 8, 334–345. 24. McQuiston, F.C. Correlation of heat, mass and momentum transport coeffi- cients for plate-fin-tube heat transfer surfaces with staggered tubes. ASHRAE Trans. 1978, 84, 294–309. 25. Steiner, D.; Taborek, J. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transf. Eng. 1992, 13, 322–329. [CrossRef] 26. Gnielinski, V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976, 16, 359–368. 27. Friedel, L. Improved friction pressure drop for horizontal and vertical two-phase pipe flow. In Proceedings of the European Two-Phase Flow Group Meeting Paper E2, Ispra, Italy, June 1979. 28. Shash, M.M. A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transf. 1979, 22, 547–556. [CrossRef] 29. Theodore, L.B.; Adrienne, S.L.; Frank, P.I. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9781118137253. 30. Banasiak, K.; Hafner, A.; Kriezi, E.E.; Madsen, K.B.; Birkelund, M.; Fredslund, K. Development and performance mapping of a multi-ejector expansion work recovery pack for R744 vapour compression units. Int. J. Refrig. 2015, 57, 265–276. [CrossRef] 31. Smitt, S.; Tolstorebrov, I.; Hafner, A. Integrated CO2 system with HVAC and hot water for hotels: Field measurements and performance evaluation. Int. J. Refrig. 2020, 116, 59–69. [CrossRef] 32. Chen, Y.; Gu, J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. Int. J. Refrig. 2005, 28, 1238–1249. [CrossRef]

PDF Image | Dynamic Modelling and Validation of an Air-to-Water Reversible R744

dynamic-modelling-and-validation-an-air-to-water-reversible--025

PDF Search Title:

Dynamic Modelling and Validation of an Air-to-Water Reversible R744

Original File Name Searched:

Artuso2021dma_publisert.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP