logo

Recent Advances in Transcritical CO2 (R744) Heat Pump System

PDF Publication Title:

Recent Advances in Transcritical CO2 (R744) Heat Pump System ( recent-advances-transcritical-co2-r744-heat-pump-system )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 030

Energies 2019, 12, 457 30 of 35 9. Baek, C.; Heo, J.; Jung, J.; Cho, H.; Kim, Y. Optimal control of the gas-cooler pressure of a CO2 heat pump using EEV opening and outdoor fan speed in the cooling mode. Int. J. Refrig. 2013, 36, 1276–1284. [CrossRef] 10. Tian, H.; Yang, Z.; Li, M.; Ma, Y. Research and application of CO2 refrigeration and heat pump cycle. Sci. China Ser. E Technol. Sci. 2009, 52, 1563–1575. [CrossRef] 11. Staub, J.; Rasmusen, B.D.; Robinson, M. CO2 as refrigerant: The transcritical cycle. ACHR News, 26 January 2004. 12. Austin, B.T.; Sumathy, K. Trans-critical carbon dioxide heat pump systems: A review. Renew. Sustain. Energy Rev. 2011, 15, 4013–4029. [CrossRef] 13. Yang, J.L.; Ma, Y.T.; Li, M.X.; Guan, H.Q. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander. Energy 2005, 30, 1162–1175. [CrossRef] 14. Eckhard, D.M.; Groll, A. Efficiencies of transcritical CO2 cycles with and without an expansion turbine. Int. J. Refrig. 1998, 21, 577–589. 15. Sarkar, J.; Bhattacharyya, S.; Gopal, M.R. Transcritical CO2 heat pump systems: Exergy analysis including heat transfer and fluid flow effects. Energy Convers. Manag. 2005, 46, 2053–2067. [CrossRef] 16. Bai, T.; Yan, G.; Yu, J. Thermodynamic analyses on an ejector enhanced CO2 transcritical heat pump cycle with vapor-injection. Int. J. Refrig. 2015, 58, 22–34. [CrossRef] 17. Ghazizade-Ahsaee, H.; Ameri, M. Energy and exergy investigation of a carbon dioxide direct-expansion geothermal heat pump. Appl. Therm. Eng. 2018, 129, 165–178. [CrossRef] 18. Yang, Y.; Li, M.; Wang, K.; Ma, Y. Study of multi-twisted-tube gas cooler for CO2 heat pump water heaters. Appl. Therm. Eng. 2016, 102, 204–212. [CrossRef] 19. Qi, P.C.; He, Y.L.; Wang, X.L.; Meng, X.Z. Experimental investigation of the optimal heat rejection pressure for a transcritical CO2 heat pump water heater. Appl. Therm. Eng. 2013, 56, 120–125. [CrossRef] 20. Yu, P.Y.; Lin, K.H.; Lin, W.K.; Wang, C.C. Performance of a tube-in-tube CO2 gas cooler. Int. J. Refrig. 2012, 35, 2033–2038. [CrossRef] 21. Yamaguchi, S.; Kato, D.; Saito, K.; Kawai, S. Development and validation of static simulation model for CO2 heat pump. Int. J. Heat Mass Transf. 2011, 54, 1896–1906. [CrossRef] 22. Yun, R.; Kim, Y.; Park, C. Numerical analysis on a microchannel evaporator designed for CO2 air-conditioning systems. Appl. Therm. Eng. 2007, 27, 1320–1326. [CrossRef] 23. Elbel, S.; Hrnjak, P. Flash gas bypass for improving the performance of transcritical R744 systems that use microchannel evaporators. Int. J. Refrig. 2004, 27, 724–735. [CrossRef] 24. Brown, J.S.; Kim, Y.; Domanski, P.A. Evaluation of Carbon Dioxide as R-22 Substitute for Residential Air-Conditioning. ASHRAE Trans. 2002, 108, 954–963. 25. Jiang, Y.; Ma, Y.; Li, M.; Fu, L. An experimental study of trans-critical CO2 water–water heat pump using compact tube-in-tube heat exchangers. Energy Convers. Manag. 2013, 76, 92–100. [CrossRef] 26. Rozhentsev, A.; Wang, C.C. Some design features of a CO2 air conditioner. Appl. Therm. Eng. 2001, 21, 871–880. [CrossRef] 27. Hiwata, A.; Iida, N.; Futagami, Y.; Sawai, K.; Ishii, N. Performance investigation with oil-injection to compression chambers on CO2-scroll compressor. In Proceedings of the International Compressor Engineering Conference, Purdue University, West Lafayette, IN, USA, 16–19 July 2002. Paper 1577. 28. White, S.D.; Yarrall, M.G.; Cleland, D.J.; Hedley, R.A. Modelling the performance of a transcritical CO2 heat pump for high temperature heating. Int. J. Refrig. 2002, 25, 479–486. [CrossRef] 29. Xing, M.; Yu, J.; Liu, X. Thermodynamic analysis on a two-stage transcritical CO2 heat pump cycle with double ejectors. Energy Convers. Manag. 2014, 88, 677–683. [CrossRef] 30. Boccardi, G.; Botticella, F.; Lillo, G.; Mastrullo, R.; Mauro, A.W.; Trinchieri, R. Thermodynamic Analysis of a Multi-Ejector, CO2, Air-To-Water Heat Pump System. Energy Procedia 2016, 101, 846–853. [CrossRef] 31. Agrawal, N.; Bhattacharyya, S. Non-adiabatic capillary tube flow of carbon dioxide in a transcritical heat pump cycle. Energy Convers. Manag. 2007, 48, 2491–2501. [CrossRef] 32. Kim, Y.J.; Chang, K.-S. Development of a thermodynamic performance-analysis program for CO2 geothermal heat pump system. J. Ind. Eng. Chem. 2013, 19, 1827–1837. [CrossRef] 33. Tao, Y.B.; He, Y.L.; Tao, W.Q.; Wu, Z.G. Experimental study on the performance of CO2 residential air-conditioning system with an internal heat exchanger. Energy Convers. Manag. 2010, 51, 64–70. [CrossRef] 34. Chang, Y.S.; Kim, M.S. Modelling and performance simulation of a gas cooler for a CO2 heat pump system. HVAC&R Res. 2007, 13, 445–456.

PDF Image | Recent Advances in Transcritical CO2 (R744) Heat Pump System

recent-advances-transcritical-co2-r744-heat-pump-system-030

PDF Search Title:

Recent Advances in Transcritical CO2 (R744) Heat Pump System

Original File Name Searched:

energies-12-00457.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP