Electro-Driven Materials and Processes for Lithium

PDF Publication Title:

Electro-Driven Materials and Processes for Lithium ( electro-driven-materials-and-processes-lithium )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 004

Membranes 2022, 12, 343 4 of 27 Li, a concentration significantly higher than that present in natural ores or within marine sources, making extraction from spent batteries attractive as an essential secondary source of Li (Table 3). Conventional LIB materials include LiCoO2 [23], LiMn2O2 [24], LiNi0.33Mn0.33Co0.33O2, or LiFePO4 [25]. One ton of spent LIBs cathode battery waste represents approximately USD 8500 of Li and USD 7200 of Co [9]. The LIBs electrolyte, whose role is to support the rapid transportation of carrier ions across the electrodes, is typically composed of LiPF6 [26] with additives such as NaPF6 [27] or LiBF4 [28]. Table 3. The weight percentage of Li in each part of LIB material [22]. Component g % Cathode material Metallic shell Plastic shell Electrolyte 20.9 6.6 Cu electrode 17.2 5.4 Al electrode 7.5 2.4 Polymer 6.8 2.2 Total 316 100 The previous review published in 2021 dealt with lithium recovery through green electrochemical-battery approaches [29]. The authors focused on challenges for lithium extraction from battery wastes by the application of an electrochemical battery system employed with a lithium-capturing electrode for Li recovery [30]. Another review, which was also published in 2021, dealt with challenges for lithium supply, focusing on the life cycle of lithium and its recovery following circular economy rules [29]. Moreover, Kader et al. summarized the techniques of lithium recycling from lithium-ion batteries [31] From these reviews, it is clear that challenges in efficient and cost-effective separation are still limiting the cost-effectiveness of Li production, and advances in techniques for the selective speciation of Li from complex brines and effluents are required. This review discusses the potentials of electro-membrane processes to support mining and hydrometal- lurgical operations, as well as the recycling and recovery of Li from used items and devices. The application of electro-membrane processes supporting the speciation of Li will be presented and critically discussed in terms of ion selectivity, Li recovery efficiency, the theory of specific capturing Li, and techno-economical aspects. A circular Li economy will only arise from the synergistic development of intensive and integrated technologies trains. The prospects for electro-membrane processes to contribute to this technology paradigm will be discussed. 2. Benchmark Lithium Compounds Production Technologies The current methods of producing lithium compounds vary with the origin of the feed- stock, whereby Li-ions, as well as other valuable metal ions, are extracted. In the following sections, technologies are therefore divided into methods applicable to mineral rocks, brines, and lixiviate from e-waste digestion. This section will briefly benchmark existing commer- cial technologies to enable subsequent comparisons with electro-membrane processes. 2.1. Conventional Recovery of Li from Ores In extractive metallurgy, Li is recovered chemically or through a combination of chemical and pyro-metallurgical processes. Two different processes, namely, roasting and calcination or chlorination and leaching, are reported to support Li recovery from ores. These processes involve calcination or roasting followed by leaching to dissolve lithium and transfer it into an aqueous phase. Following typical ore processing techniques, such 130.9 41.4 51 16.1 50 15.8

PDF Image | Electro-Driven Materials and Processes for Lithium

PDF Search Title:

Electro-Driven Materials and Processes for Lithium

Original File Name Searched:

membranes-12-00343-v3.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)