First High-Power CSEM

PDF Publication Title:

First High-Power CSEM ( first-high-power-csem )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

Minerals 2022, 12, 1236 20 of 21 7. Streich, R. Controlled-Source Electromagnetic Approaches for Hydrocarbon Exploration and Monitoring on Land. Surv. Geophys. 2016, 37, 47–80. [CrossRef] 8. Tietze, K.; Ritter, O.; Veeken, P. Controlled-source electromagnetic monitoring of reservoir oil saturation using a novel borehole- to-surface configuration. Geophys. Prospect. 2015, 63, 1468–1490. [CrossRef] 9. Henke, C.H.; Krieger, M.H.; Strack, K.; Zerilli, A. Subsalt imaging in northern Germany using multiphysics (magnetotellurics, gravity, and seismic). Interpretation 2020, 8, SQ15–SQ24. [CrossRef] 10. Strack, K.; Davydycheva, S.; Hanstein, T.; Smirnov, M. A new array system for multiphysics (MT, LOTEM, and microseismics) with focus on reservoir monitoring. AIP Conf. Proc. 2017, 1861, 020001. 11. Hu, W.; Yan, L.; Su, Z.; Zheng, R.; Strack, K. Array TEM sounding and application for reservoir monitoring. In Proceedings of the SEG Technical Program Expanded Abstracts 2008; Society of Exploration Geophysicists: Houston, TX, USA, 2008; pp. 634–638. 12. Demirci, I ̇.; Dikmen, Ü.; Candansayar, M.E. Two-dimensional joint inversion of Magnetotelluric and local earthquake data: Discussion on the contribution to the solution of deep subsurface structures. Phys. Earth Planet. Inter. 2018, 275, 56–68. [CrossRef] 13. Davydycheva, S.; Rykhlinski, N. Focused-source EM survey versus time-domain and frequency-domain CSEM. Lead. Edge 2009, 28, 944–949. [CrossRef] 14. Davydycheva, S.; Rykhlinski, N. Focused-source electromagnetic survey versus standard CSEM: 3D modeling in complex geometries. Geophysics 2011, 76, F27–F41. [CrossRef] 15. Demirci, I ̇.; Candansayar, M.E.; Vafidis, A.; Soupios, P. Two dimensional joint inversion of direct current resistivity, radio- magnetotelluric and seismic refraction data: An application from Bafra Plain, Turkey. J. Appl. Geophys. 2017, 139, 316–330. [CrossRef] 16. Strack, K.; Davydycheva, S. Using Electromagnetics to Map Lateral Fluid Variations in Carbonates in SE Asia. In New Approaches in Engineering Research; Book Publisher International (a part of SCIENCEDOMAIN International): Dulles, Virginia, 2021; Volume 2, pp. 69–79. 17. Palisch, T.; Al-Tailji, W.; Bartel, L.; Cannan, C.; Zhang, J.; Czapski, M.; Lynch, K. Far-Field Proppant Detection Using Electromag- netic Methods-Latest Field Results. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 24–26 January 2017. 18. Soupios, P.; Davydycheva, S.; Strack, K. Mapping fluid front in Carbonates using Electromagnetic. In Proceedings of the SPWLA Abu Dhabi Chapter Topical Conference, Reservoir Fluid Surveillance, Today and Beyond, Abu Dhabi, United Arab Emirates, 13–14 December 2021. 19. Strack, K.; Pandey, P. Exploration with controlled-source electromagnetics under basalt cover in India. Lead. Edge 2007, 26, 360–363. [CrossRef] 20. Aboud, E.; Wameyo, P.; Alqahtani, F.; Moufti, M.R. Imaging subsurface northern Rahat Volcanic Field, Madinah city, Saudi Arabia, using Magnetotelluric study. J. Appl. Geophys. 2018, 159, 564–572. [CrossRef] 21. Autio, U.; Smirnov, M.Y.; Savvaidis, A.; Soupios, P.; Bastani, M. Combining electromagnetic measurements in the Mygdonian sedimentary basin, Greece. J. Appl. Geophys. 2016, 135, 261–269. [CrossRef] 22. Demirci, I ̇.; Gündog ̆du, N.Y.; Candansayar, M.E.; Soupios, P.; Vafidis, A.; Arslan, H. Determination and Evaluation of Saltwater Intrusion on Bafra Plain: Joint Interpretation of Geophysical, Hydrogeological and Hydrochemical Data. Pure Appl. Geophys. 2020, 177, 5621–5640. [CrossRef] 23. Haroon, A.; Lippert, K.; Mogilatov, V.; Tezkan, B. First application of the marine differential electric dipole for groundwater investigations: A case study from Bat Yam, Israel. Geophysics 2018, 83, B59–B76. [CrossRef] 24. Panagopoulos, G.; Soupios, P.; Vafidis, A.; Manoutsoglou, E. Integrated use of well and geophysical data for constructing 3D geological models in shallow aquifers: A case study at the Tymbakion basin, Crete, Greece. Environ. Earth Sci. 2021, 80, 142. [CrossRef] 25. Rani, P.; Soupios, P.; Barsukov, P. Regional tectonic model of Southern, Central part of the Mygdonian basin (Northern Greece) by applying 3D Transient Electromagnetic Modeling. J. Appl. Geophys. 2020, 176, 104008. [CrossRef] 26. He, Z.; Hu, Z.; Gao, Y.; He, L.; Meng, C.; Yang, L. Field test of monitoring gas reservoir development using time-lapse continuous electromagnetic profile method. Geophysics 2015, 80, WA127–WA134. [CrossRef] 27. Hördt, A.; Andrieux, P.; Neubauer, F.M.; Rüter, H.; Vozoff, K. A first attempt at monitoring underground gas storage by means of time-lapse multichannel transient electromagnetics. Geophys. Prospect. 2000, 48, 489–509. [CrossRef] 28. Kalscheuer, T.; Juhojuntti, N.; Vaittinen, K. Two-Dimensional Magnetotelluric Modelling of Ore Deposits: Improvements in Model Constraints by Inclusion of Borehole Measurements. Surv. Geophys. 2018, 39, 467–507. [CrossRef] 29. Cabello, J. Lithium brine production, reserves, resources and exploration in Chile: An updated review. Ore Geol. Rev. 2021, 128, 103883. [CrossRef] 30. Wang, D.; Dai, H.; Liu, S.; Wang, C.; Yu, Y.; Dai, J.; Liu, L.; Yang, Y.; Ma, S. Research and exploration progress on lithium deposits in China. China Geol. 2020, 3, 137–152. [CrossRef] 31. Martinez, Y.; Ashadi, A.; Hinojosa, H.; Soupios, P.; Strack, K. New High-Power Controlled Source Electromagnetic System for Geothermal Applications. In Proceedings of the Geothermal Rise Conference, Reno, NV, USA, 28–31 August 2022. 32. Tulinius, H.; Ádám, L.; Halldórsdóttir, H.; Yu, G.; Strack, K.; Allegar, N.; He, L.; He, Z. Exploring for geothermal reservoirs using broadband 2-D MT and gravity in Hungary. In Proceedings of the SEG Technical Program Expanded Abstracts 2008; Society of Exploration Geophysicists: Houston, TX, USA, 2008; pp. 1147–1151.

PDF Image | First High-Power CSEM

PDF Search Title:

First High-Power CSEM

Original File Name Searched:

minerals-12-01236-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)