Lithium Brine Extraction

PDF Publication Title:

Lithium Brine Extraction ( lithium-brine-extraction )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 004

Article: Lithium Brine Extraction Technologies & Approaches Lithium Recovery via Chemical Precipitation Lithium recovery via conventional chemical precipitation normally starts by subjecting lithium-rich brine to a series of solar pond evaporations. This will precipitate other salts such as sodium chloride and potassium chloride, while concentrating the lithium. Lime (calcium hydroxide) is then added to the concentrated lithium brine to further remove magnesium as magnesium hydroxide, and sulfate as calcium sulfate. Any calcium in the concentrated brine is removed as calcium carbonate by adding sodium carbonate. The brine that results from these chemical precipitations is then subjected to a carbonation process, where the lithium reacts with sodium carbonate at 80-90°C to produce technical- grade lithium carbonate. This can be further purified to produce battery-grade lithium by re-dissolving the lithium carbonate, and then using an ion exchange process to remove impurities. To reduce the time required for solar evaporation concentration, lithium will sometimes be precipitated as lithium phosphate, which precipitates more quickly than lithium carbonate due to its roughly 30-fold lower solubility. Lithium phosphate is then converted into battery-grade lithium hydroxide through an electrochemical process. Lithium Recovery via Adsorption Lithium selective ion exchange sorbents are a promising alternative for extracting lithium from brines. Inorganic ion exchange sorbents, such as lithium manganese oxides, spinel lithium titanium oxides, and lithium aluminum layered double hydroxide chloride, have been shown to have high lithium-selective uptake capacity. However, the recovery process requires the lithium to be in contact with these sorbents for long periods of time. Additionally, sorbents can be very expensive; they are mostly available as powders that require energy-intensive 4 www.saltworkstech.com projects@saltworkstech.com © 2018 Saltworks Technologies

PDF Image | Lithium Brine Extraction

PDF Search Title:

Lithium Brine Extraction

Original File Name Searched:

Lithium-Brine-Extraction-Technologies.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)