Lithium Recovery from Aqueous Resources

PDF Publication Title:

Lithium Recovery from Aqueous Resources ( lithium-recovery-from-aqueous-resources )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 005

https://doi.org/10.1595/205651317X696676 Johnson Matthey Technol. Rev., 2018, 62, (2) Precursors Synthesis Morphology Solution Capacity, Ref. mg g–1 Molar Mn/Li = 1.125 Calcination of lithium manganese dioxide (LiMnO ) which was Materials prepared by the reflux method was less crystalline as compared to the hydrothermal method Particle size 100–300 nm Particle size ≤200 nm Particle size ≤200 nm 2 made by hydrothermal Seawater (0.17 40 (20) mg l–1 Li+) Simulated brine (270 mg l–1 Li+), 27.2 (22) 50°C, pH = 5.35 LiCl (69.4 mg l–1 Li+, with the presence of Na+, 42.1 (24) K+, Ca2+ and Mg2+), pH = 10.1 Qarhan salt lake brine (179 mmol l–1 Li+, 15,190 mmol l–1 Na+, 13,729 mmol l–1 26.9 (25) K+, 429 mmol l–1 Ca2+, 80,125 mmol l–1 Mg2+) LiCl enriched seawater (5 mg 40 (37) l–1 Li+) trend was found in Li+ uptake with increasing Li:Mn molar ratio (33). Furthermore, the extraction capacity of Li1.6Mn1.6O4 in simulated brines (270 mg l–1 Li+) increases with increasing temperature (30–50°C) and increasing pH values (1–12) (22). The high selectivity for lithium ions was confirmed, with high separation coefficients of αLi/Mg = 109.5, αLi/Na = 220.7, αLi/K = 125.5 (22). In addition, there have been studies on ion sieves derived from antimony (37), Mg (39, 40) and Fe (41) doped Li-Mn-O. The ion exchange capacity (from Li+ enriched seawater) of ion sieves derived from Li1.16Sb0.29Mn1.54O4 reached 40 mg g–1 (37). Mg-doped spinel Li-Mn-O ion sieve exhibited an optimum ion exchange capacity of 37.4 mg g–1 from LiCl solution (200 mg l–1 Li+, pH = 12) (39). Nevertheless, MgMn2O4 exhibited a small ion exchange capacity (from seawater) of 8.5 mg g–1 and the equilibrium time is 96 hours, indicating a slow ion exchange (42). Li1.6Mn1.6O4 Li1.16Sb0.29Mn1.54O4 and reflux methods Calcination of LiMnO2 which was made by a hydrothermal method using manganese(III) oxide (Mn2O3) and LiOH Calcination of LiMnO2 which was made by a hydrothermal method using potassium permanganate (KMnO4), manganese(II) chloride (MnCl2) and LiOH Calcination of LiMnO2 which was made by a controlled redox precipitation using manganese(II) hydroxide (Mn(OH)2), LiOH and ammonium persulfate ((NH4)2S2O8) Wet chemistry and hydrothermal at 120°C inside the solid (20). Li1.6Mn1.6O4 is relatively difficult to synthesise, usually by calcination of LiMnO2 in O2 at an appropriate temperature (8LiMnO2 + 2O2 → 5Li1.6Mn1.6O4). To date, the highest reported ion exchange capacity is 42.1 mg g–1 (6.06 mmol g–1) from LiCl solution at a pH of 10.1 (24). However, the lithium uptake of the same sorbent from salt lake brine dropped to 28.3 mg g–1 (4.08 mmol g–1) and was further reduced to 25.1 mg g–1 after six cycles (24). In addition, the ion exchange capacity increases with increasing stacking fault concentrations in the precursor LiMnO2 (24, 38). Li1.6Mn1.6O4 prepared by the hydrothermal method showed a slightly higher lithium uptake and cycling stability than that prepared by the reflux method (20). Lithium extractive materials prepared with LiOH·H2O and manganese(II) carbonate (MnCO3) usually have higher Li+ ion exchange capacity than materials prepared with Li2CO3 and MnCO3, and an ascending 165 © 2018 United States Government

PDF Image | Lithium Recovery from Aqueous Resources

PDF Search Title:

Lithium Recovery from Aqueous Resources

Original File Name Searched:

b8befda967a8ccf19190203d3b5aeae0673f.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)