Lithium Recovery from Aqueous Resources

PDF Publication Title:

Lithium Recovery from Aqueous Resources ( lithium-recovery-from-aqueous-resources )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

https://doi.org/10.1595/205651317X696676 Johnson Matthey Technol. Rev., 2018, 62, (2) fabricated. These membranes showed exceptional stability in Li+ extraction with TBP/FeCl3/kerosene for about 1037 hours. This higher stability was attributed to the unique structure of EVAL, consisting of both hydrophobic ethylene and hydrophilic vinyl alcohol units (78). In a recent study, novel polystyrene sulfonate (PSS) incorporated HKUST-1 MOF membranes were fabricated for Li+ recovery from brines through an in situ lithium confinement process (80). These MOF membranes showed exceptionally good performance in Li+ recovery with separation selectivities (molar) of 35, 67 and 1815 over Na+, K+ and Mg2+, respectively. It was established that the perm-selectivity followed a trend of Li+ > Na+ > K+, which was determined by the corresponding binding affinities of these cations to the sulfonate groups. The transportation of Li+ through the membrane is proposed to be governed by the Grotthuss mechanism, wherein the charge is transported by the coordinated hopping of Li+ between sulfonate groups of PSS threaded through the cavities of HKUST-1 (80). Another successful membrane-type adsorbent of spinel manganese oxide (H1.33Mn1.67O4) was prepared by a solvent exchange method using PVC as a binder (81). This membrane-type adsorbent has an uptake capacity of 10.6 mg g–1 Li+ from seawater (0.17 mg l–1 Li+). A membrane reservoir system with encapsulated Li1.33Mn1.67O4 in PSf and Kimtex (Korea Non-woven Tech Ltd, South Korea) was tested for Li+ recovery from seawater. The Kimtex based systems showed best results with ~84% Li+ recovery in one day due to the easy wetting and water penetration in the reservoir (82). The Li1.6Mn1.6O4-PSf/ PAN‐based composite mixed matrix nanofibres as a flow through membrane Li+ absorber was highly permeable to water under minimal trans-membrane pressure (83, 84). The balance between kinetic and dynamic Li+ adsorption capacitycouldbeobtainedatoptimalseawater and membrane contact time (84). Bhave et al. (85) have fabricated novel LDH (LIS)/Kynar®-PVDF mixed matrix membranes supported on PVDF hollow fibres (Arkema Inc, France) for Li+ recovery from geothermal brines. Due to the high temperature of the geothermal brines, robust membranes are required to operate at temperatures up to 95°C. Preliminary results showed the potential of these membranes to obtain a high lithium separation factor with nearly complete rejection of other monovalent and divalent cations in the brine solution. The selective sorption/diffusion of Li+ and back-extraction into the strip is carried out simultaneously, eliminating the need to employ a separate step for Li+ recovery. In summary, although there are many published reports on membrane-based separation processes for lithium extraction, the technology is currently at the laboratory scale with significant potential for further development and process scale-up in the future. 4. Recovery of Lithium from Brines by Other Methods There have been reports of lithium extraction using other methods such as precipitation and solvent extraction. The precipitation method was used to extract lithium from the Dead Sea in 1981 (86). Later a two-stage precipitation process was developed to extract Li2CO3 from brines collected from Salar de Uyuni, Bolivia (700–900 mg l–1 Li+) (8). Solvent extraction has been widely used to extract metals from the aqueous phase due to the simplicity of the equipment and operation. In fact, it was applied to extract lithium from aqueous solutions of alkali metal salts as early as 1968 (87). The extraction of Li+ ions into the organic phase is associated with the cation exchange mechanism. Various solvents including tri-n-butyl phosphate (88), ionic liquid added 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) mixed with tri-n-butyl (89) and so on, have been reported for lithium extraction. Organophosphorus ligands in the presence of ammonia were tested for lithium extraction, in which the highest extraction percentages in the presence of H-PHO, H-PHI and H-BIS ligands were 43.2%, 45.7% and 90.0%, respectively (90). 5. Recovery of Lithium from Recycled Lithium-Ion Batteries A rechargeable LIB mainly comprises a lithium-containing oxide cathode, an anode, an organic electrolyte and a separator. Table VI lists the chemical composition of a typical LIB. The cathode is usually made of LiCoO2, lithium nickel dioxide (LiNiO2) and lithium manganese(III,IV) oxide (LiMn2O4) and the anode is typically graphite. Aluminium and copper are used as current collectors. The recoverable materials from an end-of-life battery include aluminium, copper, LiOH or Li2CO3, cobalt oxide, nickel oxide and manganese oxide. There have been a number of articles in the literature focused on recovery of metals such as cobalt, lithium and nickel from spent LIBs (91–95). 170 © 2018 United States Government

PDF Image | Lithium Recovery from Aqueous Resources

PDF Search Title:

Lithium Recovery from Aqueous Resources

Original File Name Searched:

b8befda967a8ccf19190203d3b5aeae0673f.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)