Lithium Recovery from Seawater Salt Lake Brine

PDF Publication Title:

Lithium Recovery from Seawater Salt Lake Brine ( lithium-recovery-from-seawater-salt-lake-brine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

Thermodynamics and Energy Engineering in hard rocks were 12.8 and 30.7 million tons, respectively; while the brine field data were reported as 21.3 and 65.3 million tons, respectively, for the minimum and maximum evaluation [3]. 3. Lithium resources In contradistinction to the uses of lithium, it is necessary to discuss the question of responsibility for Li from a variety of sources. The economic efficiency of lithium is found in minerals, clays and brines. High-grade lithium ores and brines are the current sources for all commercial lithium manufacture. Figure 1(a) demonstrates the distribution of lithium over different resources. The figure shows that conti- nental brine is the largest resource (59%) for lithium, followed by solid rock (25%). Figure 1(b) demonstrates the spread of lithium across countries. The largest of the studied lithium deposits are in Bolivia and Chile. Figure 1(c) demonstrates the dis- tribution of lithium production across countries. The main producers and exporters of lithium ores are Chile and Australia. Chile and China have huge resources of lithium ore. Canada, Russia, Serbia and Congo (Kinshasa) have lithium ores of about 1 million tons each, and equal reserve for Brazil is total 180,000 tons [62]. It is estimated that the earth’s crust contains an average of about 0.007% lithium. In nature, lithium does not occur freely, but it occurs in small quantities in almost all magmatic breeds and the ocean, in seawater, in the waters of many mineral springs. Of the approximately 20 known minerals containing lithium, only 4, that is, Lepidolite (KLi1.5Al1.5[Si3O10][F,OH]2), Spodumene (LiO2·Al2O3·4SiO2), Petalite (LiO2·Al2O3·8SiO2) and Amblygonite (LiAl[PO4][OH,F]) are known to occur in quantities sufficient for commercial interest as well industrial importance [63–66]. The spodumen (LiAlSi2O6) mineral is the most significant industrial lithium ore mineral. Minerals of lithium also exist as cookeite as (LiAl4(Si3Al)O10(OH)8) in fine hydrothermal veins of quartz. Taeniolite (KLiMg2 Si4O10F2) is present in veins of smoky quartz in recrystallized novaculite, in manganese deposits the appear- ance of Lithiophorite ((Al, Li) Mn4+O2(OH)) is noted. Pegmatites, Taeniolite, Lithiophorite and Cookeite are considered to be economically inefficient sources of lithium [67–69]. A large part of the lithium is extracted from brine or seawater has a high concentration of lithium carbonate. In the earth’s crust, there are brines called continental brines/subsurface brines are the main source for the production of lithium (lithium carbonate). The literature reports that lithium is also present in seawater at about 0.17 mg L−1. Lithium is found in significant quantities in oil well brines and geothermal waters. These sources of brine and seawater are considered less expensive than mining from rocks such as spodumene, lepidolite, amblygonite and petalite containing lithium. Figure 1. The distribution of lithium (a) different natural resources, (b) worldwide distribution, (c) the number of producers around the world. 4

PDF Image | Lithium Recovery from Seawater Salt Lake Brine

PDF Search Title:

Lithium Recovery from Seawater Salt Lake Brine

Original File Name Searched:

IntechOpenSamadiyBookchapter.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)