Lithium Recovery from Seawater Salt Lake Brine

PDF Publication Title:

Lithium Recovery from Seawater Salt Lake Brine ( lithium-recovery-from-seawater-salt-lake-brine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water... DOI: http://dx.doi.org/10.5772/intechopen.90371 4. Lithium extraction from various resources 4.1 Lithium extraction from brine Extracting lithium from brine is an important potential resource. When consid- ered from an economic and scientific perspective, the following points are important to consider lithium recovery from brine: (1) suitability of pond soil and admissibility of the area for solar evaporation; (2) the concentration of lithium in brine; (3) the ratio of alkali metals and alkaline earth elements to lithium and (4) the complexity of the phase chemistry. The resources of brines containing lithium can be divided into three types: evaporative, geothermal and oilfield brines. In the process of evaporation of the brine about 50% of the original natural brine, lithium remains in the residual brine. This expression has been ascribed to the retention of lithium by precipitated salts. Residual brine is highly loaded with Mg2+ as compared with K+ and Na+, this makes it difficult to extract lithium from this residual brine [70]. The extraction of lithium from brine does not correspond to any general regu- larity since each process is specific depending on the composition of the brine field. Typical lithium production technology used for lithium extraction by Outotec®, where different methods such as precipitation, solvent extraction and flotation were used (Figure 2). Lithium extraction by Outotec® uses a lithium carbocation pro- cess to produce lithium [71]. Various lithium separation and purification methods have been reported in the literature, which is discussed below. By Chagnes and Swiatowska the general technological scheme of lithium production from brine and seawater is proposed [72]. In this method, liquid-liquid extraction, ion exchange, electrodialysis and adsorption are important hydrometallurgical processes neces- sary to concentrate lithium before production. [72]. Table 1 discusses and summa- rizes the extraction of lithium from both brine and synthetic brine in various ways. 4.2 Recovery of lithium from brine by precipitation Pelly et al., Epstein et al. and Kalpan et al. it has been reported that lithium recovery as precipitation of lithium aluminate from Dead sea brine and final brine [73–75]. Pelly et al. have reported, it is necessary to control the pH of the brine through dilution to achieve 90% extraction efficiency end brine and Dead sea brine [73]. As indicated, the optimal pH should be in the range of 6.6–7.2 For Dead sea brine and 6.8–7.0 for end brine. The optimum reaction time should be 3 hours at room temperature. AlCl3·6H2O (30–40 g L−1) was added to the brine. The negative effect was given by higher temperature, but better yields were obtained at room temperature and the yield decreased with increasing temperature [73]. The importance of extracting lithium from the Dead sea by precipitation as lithium aluminate followed by liquid-liquid extraction to separate lithium from aluminum with economic evaluation was reported [74]. Kaplan et al. reported on the process of extracting lithium by lithium aluminate from Dead sea brine by precipitation [75]. A small amount of lithium, which is mainly present as LiCl, was precipitated as a lithium aluminate precipitate using ammonia and aluminum salt at room temperature. Although subsequent reduction processes both by dissolving lithium in sulfuric acid and followed by precipitation with calcium chloride lithium were reduced as alum [75]. An et al. reported on the process of extracting lithium from brine collected in Salar de Uyuni, Bolivia. Mg and Ca were extracted from the brine as Mg(OH)2 and gypsum (CaSO4·2H2O) using sulfate and lime. Both CAO and MgO were extracted using oxalic acid followed by firing using residual Ca and Mg. In the end, by heating at 80–90°C lithium was recovered in the form of Li2CO3. 5

PDF Image | Lithium Recovery from Seawater Salt Lake Brine

PDF Search Title:

Lithium Recovery from Seawater Salt Lake Brine

Original File Name Searched:

IntechOpenSamadiyBookchapter.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)