logo

Lithium-Rich Brines in Salt Lakes on the Qinghai-Tibetan

PDF Publication Title:

Lithium-Rich Brines in Salt Lakes on the Qinghai-Tibetan ( lithium-rich-brines-salt-lakes-qinghai-tibetan )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Minerals 2019, 9, 528 12 of 15 4. Ebensperger, A.; Maxwell, P.; Moscoso, C. The lithium industry: Its recent evolution and future prospect. Resour. Policy 2005, 30, 218–231. [CrossRef] 5. Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global lithium availability A constraint for electric vehicles? J. Ind. Ecol. 2011, 15, 760–775. [CrossRef] 6. Jaskula, B.W. 2016 Minerals Yearbook. Lithium; U.S. Geological Survey: Reston, VI, USA, 2018. 7. Zheng, M.P.; Liu, X.F. Lithium resources in China. Adv. Mater. Ind. 2007, 8, 13–16. 8. Wang, Q.S.; Qiu, J.Z.; Shao, H.N.; Xu, H. Analysis on metallogenic characteristic and resource potential of salt lake brine lithium deposits in the global. China Min. Mag. 2015, 24, 82–88. 9. Zheng, M.P.; Liu, X.F. Hydrochemistry and Minerals Assemblages of Salt Lakes in the Qinghai-Tibet Plateau, China. Acta Geol. Sin. 2010, 84, 1585–1600. 10. Flexer, V.; Femando, B.C.; Inés, G.C. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018, 639, 1188–1204. [CrossRef] 11. Li, R.Q.; Liu, C.L.; Jiao, P.C.; Wang, J.Y. The tempo-spatial characteristics and forming mechanism of Lithium-rich brines in China. China Geol. 2018, 1, 72–83. [CrossRef] 12. Tong, W.; Mu, Z.G.; Liu, S.B. The Late-Cenozoic volcanoes and active high-temperature hydrothermal systems in China. Acta Geophys. Sin. 1990, 33, 329–335. 13. Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; Zhang, W.P.; Wang, B.D. Tectonic evolution of the Qinghai-Tibet Plateau. J. Asian Earth Sci. 2012, 53, 3–14. [CrossRef] 14. Zheng, X.Y. Salt Lakes in the Tibet; Science Press: Beijing, China, 1988; pp. 1–80. 15. Zheng, M.P.; Xiang, J. Salt Lakes in the Tibetan Plateau; Science Press: Beijing, China, 1989; pp. 1–219. 16. Zheng, X.Y.; Zhang, M.G.; Xu, C.; Li, B.X. Salt Lakes in China; Science Press: Beijing, China, 2002. 17. Zheng, M.P.; Liu, X.F. Hydrochemistry of salt lakes of the Qinghai-Tibet Plateau, China. Aquat. Geochem. 2009, 15, 293–320. [CrossRef] 18. Dong, T.; Tan, H.B.; Zhang, W.J.; Zhang, Y.F. The geochemical pattern of Li in salt lakes in the Tibet. J. Hohai Uni. 2015, 43, 230–235. 19. Wang, Z.; Li, M.L.; Shao, B.; Wu, G.D.; Wu, X.W. Research of natural evaporation of Eyacuo salt lake brine in Tibet. J. Salt Sci. Chem. Ind. 2018, 47, 28–30. 20. Wu, J.L.; Wang, X.K.; Dong, J.G.; Sha, Z.L. Salting-out law of the brine from the Laguocuo salt lake through isothermal evaporation at 15 ◦C. J. Tianjin Uni. Sci. Tech. 2014, 29, 55–57. 21. Wu, Q.; Zheng, M.P.; Nie, Z.; Bu, L.Z. Natural evaporation and crystallization regularity of Dangxiongcuo carbonate-type salt lake brine in Tibet. Chinese J. Inorg. Chem. 2012, 28, 1895–1903. 22. Qing, D.L.; Ma, H.Z.; Li, B.K. Boron concentration and isotopic fractionation research in BangkogCo intercrystal brine evaporation process. J. Salt Lake Res. 2012, 20, 15–20. 23. Yu, J.J.; Zheng, M.P.; Wu, Q.; Wang, Y.S.; Nie, Z.; Bu, L.Z. Natural evaporation and crystallization of Dujiali salt lake water in Tibet. Chem. Ind. Eng. Prog. 2015, 34, 4172–4178. 24. Zhang, N.; Yuan, J.J.; Dong, J.G.; Sha, Z.L. Laws of crystallization of the brine in Jiezechaka Lake in Tibet at 15 oC through evaporation and concentration. J. Tianjin Uni. Sci. Tech. 2013, 28, 44–48. 25. Zhao, Y.Y. Comprehensive utilization of brines from Mami Co. Ind. Miner. Proc. 2013, 11, 48. 26. Wu, Z.M.; Zheng, M.P.; Liu, X.F.; Nie, Z. Concentration of brines from the Dogai Coring Lake, northern Tibet, by using the two-step process: Freezing and solar evaporation. Chine. J. Inorg. Chem. 2012, 28, 995–1000. 27. Wang, X.K.; Zhang, Z.Z.; Sha, Z.L.; Dong, J.G. Study on the salt crystallization law of brine from Chabocuo salt lake in Tibet through evaporation under the temperature of 15 ◦C. J. Tianjin Uni. Sci. Tech. 2013, 28, 34–38. 28. Xia, S.; Li, Y.Y.; Tang, J.L.; Ning, W.Y.; Zheng, X.F. Experimental research on the isothermal evaporation of the brine in Baqiancuo salt lake. J. Salt Lake Res. 2013, 21, 29–31. 29. Yang, M.J.; Dong, J.G.; Yuan, J.J.; Sha, Z.L. Investigation on the salting-out law of Longmucuo brine under 5 ◦C evaporation. J. Tianjin Uni. Sci. Tech. 2013, 28, 47–50. 30. Liu, Y.; Wang, Y.S.; Nie, Z.; Wu, Q. Research on 15 ◦C-isothermal evaporation experiment of carbonate-type brines from Pengyan Co salt lake in Tibet. Inorg. Chem. Ind. 2017, 49, 21–25. 31. Li, J.D.; Shi, T.C.; Wang, Y.X.; Wu, C.; Fu, J.L. Research on natural evaporation of brine in Yiliping Mining area. J. Salt Lake Res. 2008, 16, 32–36, 65. 32. Liu, X.F.; Zheng, M.P.; Qi, W. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye Salt Lake, Tibet, China. Acta Geol. Sin. 2007, 81, 1709–1715.

PDF Image | Lithium-Rich Brines in Salt Lakes on the Qinghai-Tibetan

lithium-rich-brines-salt-lakes-qinghai-tibetan-012

PDF Search Title:

Lithium-Rich Brines in Salt Lakes on the Qinghai-Tibetan

Original File Name Searched:

minerals-09-00528.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP