P507 TBP Carriers for Lithium Extraction from Brines

PDF Publication Title:

P507 TBP Carriers for Lithium Extraction from Brines ( p507-tbp-carriers-lithium-extraction-from-brines )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Membranes 2022, 12, 839 11 of 13 References could help to keep the stability of PIMs. In the seven times’ reused transport experiments, the CTA/P507-TBP60% membrane retained excellent selectivity and permeability, showing a potential for long-term operation. The strategy of integrating P507-TBP extracting carriers into PIMs could help develop sustainable and highly stable PIMs for extracting lithium from natural salt-lake brines. Author Contributions: Conceptualization and methodology, W.Z., X.Z. and T.D.; formal analysis, W.X.; investigation, X.Z., T.D. and C.Z.; resources, L.X.; writing—original draft preparation, X.Z.; writing—review and editing, W.Z.; visualization, X.Z. and C.Z; supervision, L.X. and W.Z.; project administration, W.Z. and W.X.; funding acquisition, W.Z. All authors have read and agreed to the published version of the manuscript. Funding: This work is supported by the Natural Science Foundation of Tianjin (20JCQNJC01000), the National Natural Science Foundation of China (22076137 and 11705126) and the open foundation of State Key Laboratory of Chemical Engineering (No. SKL-ChE-20B02). Conflicts of Interest: The authors declare no conflict of interest. 1. Liu, G.; Zhao, Z.; Ghahreman, A. Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy 2019, 187, 81–100. [CrossRef] 2. Siekierka, A.; Bryjak, M.; Razmjou, A.; Kujawski, W.; Nikoloski, A.N.; Dumée, L.F. Electro-driven materials and processes for lithium recovery—A review. Membranes 2022, 12, 343. [CrossRef] [PubMed] 3. Sun, Y.; Wang, Q.; Wang, Y.; Yun, R.; Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 2020, 256, 117807. [CrossRef] 4. Shi, D.; Cui, B.; Li, L.; Peng, X.; Zhang, L.; Zhang, Y. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP – kerosene – FeCl3 system. Sep. Purif. Technol. 2018, 211, 303–309. [CrossRef] 5. Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [CrossRef] 6. Guo, X.; Hu, S.; Wang, C.; Duan, H.; Xiang, X. Highly efficient separation of magnesium and lithium and high-valued utilization of magnesium from salt lake brine by a reaction-coupled separation technology. Ind. Eng. Chem. Res. 2018, 57, 6618–6626. [CrossRef] 7. Xu, W.; Liu, D.; He, L.; Zhao, Z. A comprehensive membrane process for preparing lithium carbonate from high Mg/Li brine. Membranes 2020, 10, 371. [CrossRef] 8. Mu, Y.; Zhang, C.; Zhang, W.; Wang, Y. Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes. Desalination 2021, 511, 115112. [CrossRef] 9. Park, S.H.; Kim, J.H.; Moon, S.J.; Jung, J.T.; Wang, H.H.; Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E.; Lee, Y.M. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Membr. Sci. 2020, 598, 117683. [CrossRef] 10. Wang, Y.; Zhang, W.; Zeng, X.; Deng, T.; Wang, J. Membranes for separation of alkali/alkaline earth metal ions: A review. Sep. Purif. Technol. 2021, 278, 119640. [CrossRef] 11. Saif, H.M.; Huertas, R.M.; Pawlowski, S.; Crespo, J.G.; Velizarov, S. Development of highly selective composite polymeric membranes for Li+/Mg2+ separation. J. Membr. Sci. 2021, 620, 118891. [CrossRef] 12. Zhang, Y.; Wang, L.; Sun, W.; Hu, Y.; Tang, H.J.J.O.I.; Chemistry, E. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review. J. Ind. Eng. Chem. 2020, 81, 7–23. [CrossRef] 13. Zhang, C.; Zhang, W.; Wang, Y. Diffusion dialysis for acid recovery from acidic waste solutions: Anion exchange membranes and technology integration. Membranes 2020, 10, 169. [CrossRef] [PubMed] 14. Ji, P.-Y.; Ji, Z.-Y.; Chen, Q.-B.; Liu, J.; Zhao, Y.-Y.; Wang, S.-Z.; Li, F.; Yuan, J.-S. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep. Purif. Technol. 2018, 207, 1–11. [CrossRef] 15. Zhao, Y.; Wang, H.; Li, Y.; Wang, M.; Xiang, X. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine. Desalination 2020, 493, 114620. [CrossRef] 16. Zhang, C.; Mu, Y.; Zhang, W.; Zhao, S.; Wang, Y. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation. J. Membr. Sci. 2020, 596, 117724. [CrossRef] 17. Zante, G.; Boltoeva, M.; Masmoudi, A.; Barillon, R.; Trébouet, D. Lithium extraction from complex aqueous solutions using supported ionic liquid membranes. J. Membr. Sci. 2019, 580, 62–76. [CrossRef] 18. Song, J.; Li, X.-M.; Zhang, Y.; Yin, Y.; Zhao, B.; Li, C.; Kong, D.; He, T. Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid–liquid membrane extraction of lithium ions. J. Membr. Sci. 2014, 471, 372–380. [CrossRef] 19. Garcia-Rodríguez, A.; Matamoros, V.; Kolev, S.D.; Fontàs, C. Development of a polymer inclusion membrane (PIM) for the preconcentration of antibiotics in environmental water samples. J. Membr. Sci. 2015, 492, 32–39. [CrossRef]

PDF Image | P507 TBP Carriers for Lithium Extraction from Brines

PDF Search Title:

P507 TBP Carriers for Lithium Extraction from Brines

Original File Name Searched:

membranes-12-00839.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)